A Density Functional Study of the Structures and Energies of Vanadium Oxide Clusters on a (001) Anatase Support

 Stan A. Zygmunt¹*, Paul C. Redfern², Peter Zapol², Michael Sternberg², and Larry A. Curtiss²

 ¹Dept. of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (USA)

 ²Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439 (USA)

 *stan.zygmunt@valpo.edu

Introduction

Supported vanadium oxide catalysts, prepared by anchoring vanadium oxide (VO_x) species on a metal oxide support such as anatase TiO_2 , are used industrially for reactions like the selective oxidation of o-xylene to phthalic anhydride. The proper combination of a specific support oxide and a level of coverage of VO_x surface species can often be used to produce a catalyst system with a desirable activity and selectivity. Currently there is much interest in using supported VO_x catalysts for oxidative dehydrogenation (ODH) of light alkanes. However, the influence of the support oxide and the coverage of VO_x species on catalytic performance is not fully understood at a molecular level.

Raman spectroscopy has been used to show the dependence of vibrational spectra on VO_x coverage of the anatase TiO_2 surface [1]. However, few experimental studies have obtained quantitative geometrical information about the VO_x active sites, which are especially difficult to probe in the sub-monolayer coverage regime. Proposals for the structure of monomeric sites include di-oxo species as well as mono-oxo species bound to the support by either one, two or three V-O-Ti bridges. A previous computational study by Vittadini and Selloni considered some but not all of these possibilities [2].

Thus, in order to study the different structural possibilities in a unified way, and as a first step in modeling propane ODH by supported VO_x catalysts, we have calculated the geometries and relative energies of a variety of monomeric, dimeric, and tetrameric VO_x/TiO₂ catalyst structures. These include structures modeled by Vittadini and Selloni but also include several additional candidate structures, among which is an intriguing proposal for an "upside-down VO₄" unit by Keller et al [3]. We have also calculated vibrational frequencies for each structure in order to compare our results to previous experimental studies.

Computational Methods

To model supported monomeric and dimeric VO_x species, we used a $Ti_4O_{16}H_{16}$ cluster to represent the (001) surface of anatase TiO_2 . The tetrameric VO_x species was modeled using a larger $Ti_6O_{23}H_{22}$ cluster. In all calculations constrained geometry optimizations were performed, in which the terminal OH and OH₂ groups were fixed. The terminal O atoms were frozen at positions given by the density functional calculations of Lazzeri et al. [4], and the H atoms were frozen at an OH distance of 0.96Å along the direction pointing toward the nearest Ti atom in the experimental structure. All of our calculations utilize the B3LYP/6-31G(*) hybrid density functional method as implemented in GAUSSIAN 03. As we reported in an earlier study of propane ODH on cluster models for the (010) V_2O_5 surface [5], the 6-31G(*) basis set includes polarization functions on all non-hydrogen atoms but omits f-functions on V in the interest of computational efficiency.

Results and Discussion

Relative energies of a series of monomeric and dimeric VO_x/TiO_2 species are shown in Table 1. Energies are calculated relative to the fully hydroxylated (001) TiO_2 surface cluster plus two gas phase VO_4H_3 molecules (TiO₂ + 2 VO₄H₃). On a fully hydroxylated surface, the formation of each V-O-Ti bridge requires the elimination of one H₂O molecule.

Table 1. Relative energies of VO _x /TiO ₂ surface species (kcal/	nol)
--	-----	---

Supported VO _x Species	E (kcal/mol)
$TiO_2 + 2 VO_4H_3$	0.0
Monodentate + $VO_4H_3 + H_2O$	-6.9
Bidentate + $VO_4H_3 + 2H_2O$	-11.1
Tridentate + $VO_4H_3 + 3H_2O$	15.3
$Di-oxo + VO_4H_3 + 2H_2O$	5.5
"Upside-down" + $VO_4H_3 + H_2 + 2H_2O$	73.2
Molecular monomer + $VO_4H_3 + H_2O$	-19.5
$Dimer + 5H_2O$	-2.0
Molecular dimer +3H ₂ O	-19.9

It is noteworthy that the tridentate structure, which is often used in schematic depictions of monomeric VO_x catalytic sites, is energetically unfavorable compared to other monomer sites. And it is also clear that the "upside-down VO₄" monomer is energetically very unfavorable on the (001) TiO₂ support, although it was originally proposed as a monomer site on an Al₂O₃ support. The most stable VO_x species are the "molecular" monomer or dimer structures, which consist of VO₄H₃ or V₂O₇H₄ molecules that graft onto the TiO₂ surface while maintaining 2 or 4 V-O-H bridges. It seems likely that both of these species are present in significant concentrations under conditions of low VO_x coverage. These models for the catalytically active sites form the basis for our computational study of the propane ODH reaction.

References

- 1. Went, G. T., Oyama, S. T., Bell, A. T., J. Phys. Chem. 1990, 94, 4240.
- 2. Vittadini, A., Selloni, A., J. Phys. Chem. B 2004, 108, 7337.
- Keller, D. E., de Groot, F. M., F., Koningsberger, D. C., Weckhuysen, B. M., J. Phys. Chem. B 2005, 109, 10223.
- 4. Lazzeri, M., Vittadini, A., Selloni, A., Phys. Rev. B 2001, 63, 155409.
- 5. Redfern, P. C., Zapol, P., Sternberg, M., Adiga, S. P., Zygmunt, S. A., Curtiss, L. A., *J. Phys. Chem. B* **2006**, *110*, 8363.

This work was supported by the U. S. Department of Energy, Basic Energy Sciences, under contract DE-AC02-06CH11357, and by the Indiana Space Grant Consortium.