Reduction of NH₄**NO**₃ **by NO: Acid Catalyzed Reduction May Prevent Catalyst Deactivation in Low Temperature DeNOx**

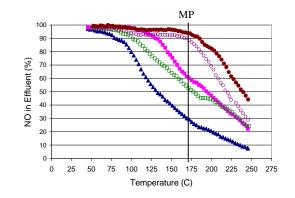
Aditya Savara, Meijun Li, Wolfgang M.H. Sachtler, and Eric Weitz* Department of Chemistry and Institute for Catalysis and Energy Processes Northwestern University, Evanston, Illinois 60208 (USA) *weitz@northwestern.edu

Introduction

The Environmental Protection Agency has mandated a 90% decrease in NOx emission standards for on-road diesel vehicles starting in 2007 [1]. As such, low temperature DeNOx catalysis (200°C) is desirable for diesel vehicular exhaust treatments. An important problem is that NH₄NO₃, which is thermally stable below 250°C, can form in these reaction networks in the presence of NH₃ and potentially deactivate catalysts by blocking catalytically active sites [2-4]. A crucial question is, therefore, whether other gas molecules present in low temperature DeNOx systems can chemically reduce NH₄NO₃ to less thermally stable species. One possible candidate for the reductant is NO. The present study focuses on the ability of NO to reduce NH₄NO₃ to NH₄NO₂. The product of reduction, NH₄NO₂, is well known to be thermally unstable above ~100°C and readily decomposes to N₂ and H₂O. We have investigated the effects of different substrates on this reaction.

Materials and Methods

 $\rm NH_4NO_3$ was ground and physically mixed with the powders of various substrates: quartz, trimethylated quartz, Na-Y zeolite, and H-Y zeolite. Following mixing, samples were exposed to either a He flow or a NO flow, in He carrier gas, in a U-shaped quartz flow reactor. The effluent was monitored by either FTIR or GC during controlled heating of the reactor in a cylindrical oven. Temperature programmed desorption experiments with NH₃ as an adsorbate are planned for the various substrates to determine the relative concentrations of Brönsted acid sites.


Results and Discussion

The reaction of NH_4NO_3 with NO at $100^{\circ}C$ on quartz yielded N_2 as a final product with NO_2 as the coproduct, consistent with a mechanism that involves an NH_4NO_2 intermediate. In FTIR experiments, NO depletion in the effluent was taken as indicative of the reduction of NH_4NO_3 by NO.

In contrast to methods such as wet impregnation, the physical mixing method of sample preparation preserved the separation of ground NH₄NO₃ and substrate powders, allowing them to remain as discrete but interspersed particles. This mitigated chemical dissociation of the bulk of NH₄NO₃ on substrate powders during sample preparation. Based on depletion of NO in the effluent, neat NH₄NO₃ as well as NH₄NO₃ physically mixed with trimethylated quartz were both reduced by NO only above NH₄NO₃'s melting point (170°C). Whereas physical mixing of NH₄NO₃ with substrates containing exposed Brönsted acid sites facilitated the reduction of N H₄NO₃ by NO at $\leq 100^{\circ}$ C. Our data show a qualitative correlation between the extent of reaction at a given temperature and the acidity of the substrate (Figure 1). A possible mechanism for the acid catalyzed reduction of NH₄NO₃ by NO will be presented.

Significance

Neat NH₄NO₃ can be reduced by NO above its melting point (170°C), while when physically mixed with acidic substrates NH₄NO₃ can be reduced by NO below 100°C. These temperatures could impact the lower limits for efficient low temperature NOx reduction, and may point towards the desirability of incorporating acidic supports in low temperature DeNOx catalysts.

Figure 1. NO depletion during temperature programmed reaction with neat NH_4NO_3 and NH_4NO_3 physically mixed with four different substrates: NH_4NO_3 – No substrate (filled circles), trimethylated quartz (open circles), Na-Y zeolite (filled squares), quartz (open squares), H-Y (filled triangles). The melting point of NH_4NO_3 (MP) is marked with a vertical line for comparison.

References

- 1. Environmental Protection Agency. Clean Diesel Combustion: Clean, Efficient, and Cost Effective Technology. EPA Fact Sheet EPA420-F-04-023 (2004).
- 2. Koebel, M., Elsener, M., and Madia, G., Ind. Eng. Chem. Res. 40, 52 (2001).
- 3. Koebel, M., Madia, G., and Elsener, M., Catal. Today 73, 239 (2002).
- 4. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., and Bandl-Konrad, *Chem. Comm.*23, 2718 (2004).