Solid state ²⁷Al NMR study of BaO/Al₂O₃ catalysts: BaAl₂O₄ formation and decomposition

<u>Ja Hun Kwak</u>, Do Heui Kim, János Szanyi, Jianzhi Hu and Charles H.F. Peden* *Institute for Interfacial Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352 USA* *chuck.peden@pnl.gov

Introduction

The control of NO_x (NO and NO₂) emissions from combustion processes, including those occurring in vehicle engines, remains a challenge particularly for systems operating at high air-to-fuel ratios (so-called 'lean' combustion). In the mid 1990's, alkali and alkaline earth oxide-based NO_x storage/reduction catalysts (especially Pt-Rh/BaO/Al₂O₃) were developed by Toyota, and have shown promising activities for lean-NO_x reduction. Although there are extensive studies on the NO_x storage/reduction mechanism, a fundamental question still remains concerning which barium phases are most favorable for storing and releasing NO_x. It has been reported that BaO and Al₂O₃ react at high temperatures (> 800°C) to form a less active aluminate phase, BaAl₂O₄. We have also reported the effects of thermal aging and H₂O treatment on the formation and decomposition of BaO/Al₂O₃[1].

In this report, the results of an investigation on the formation and decomposition of a $BaAl_2O_4$ phase for $BaO(x)/Al_2O_3$ (x = 8 and 20 wt%) catalysts using XRD and solid state ²⁷Al MAS NMR are presented.

Experimental

The BaO/Al₂O₃ samples were prepared by the incipient wetness method, using Ba(NO₃)₂ solutions and γ -alumina to yield nominally 8 and 20 wt% BaO-containing materials. After impregnation, the catalysts were activated via calcination at 500°C in flowing air for 2h. To investigate the effects of high temperature treatments on the structure, calcinations at 1000°C were carried out in a muffle furnace for 10 h. Solid state ²⁷Al-NMR spectra were acquired on a Varian/Chemagnetic CMX Infinity 300 MHz instrument with a sample spinning rate of 5 kHz and 1 s recycle delay.

Results and Discussion

Figure 1 shows that BaAl₂O₄ formation was dependent upon the BaO loading. Curves (a) and (b) are solid state ²⁷Al-NMR spectra of γ -Al₂O₃ and BaAl₂O₄ standard samples (Aldrich, after 1000°C 10h treatment). The spectrum of the Al₂O₃ sample in Fig. 1(a) contains peaks at ~0 ppm and at ~60 ppm, which are typically assigned to octahedrally and tetrahedrally coordinated Al ions, respectively. The spectrum for the BaAl₂O₄ sample has a peak at ~70 ppm which has been assigned to aluminum species with tetragonal coordination in the BaAl₂O₄ phase. Spectra (c) and (d) were obtained after calcination at 1000°C for 10h of the 8 and 20%BaO/Al₂O₃ samples, respectively. The spectrum of the 20%BaO/Al₂O₃ sample clearly shows the presence of a significant amount of BaAl₂O₄ after the high temperature calcination, while that of the 8%BaO/Al₂O₃ sample displayed the same features as the original alumina. These results are consistent with our previous reports [2] which showed that a surface (monolayer) BaO phase is quite stable against thermal aging and does not form a crystalline BaAl₂O₄ phase.

After the formation of $BaAl_2O_4$ on the 20 wt.% sample by high temperature thermal treatment, we investigated the phase changes of the resultant $BaAl_2O_4$ material by NO₂ and/or

H₂O adsorption. NO₂ adsorption does not result in any change in either the ²⁷Al-NMR or XRD spectra. However, upon water adsorption on 20%BaO/Al₂O₃ at room temperature, all of the aluminum species from the BaAl₂O₄ phase disappear and a new species. Al(OH)4⁻, forms. displaying a feature in the NMR spectrum at 79 ppm [3]. These results were confirmed by water treatment of the standard BaAl₂O₄ material (Aldrich). H₂O treatment of BaAl₂O₄ at RT results in the formation of tetrahedral and octahedral aluminum species, as well as Al(OH)₄. The development of tetrahedral and octahedral aluminum peaks prove the formation of alumina as a result of water-induced decomposition of BaAl₂O₄. The Al(OH)₄ species disappear readily when the sample is dried in an oven at 120 °C (spectrum (f)), displaying the identical ²⁷Al-NMR spectrum as the original Al_2O_3 and the

 $\begin{array}{l} \mbox{Fig.1 Solid state 27Al-NMR spectra for: (a) alumina;} \\ \mbox{(b) } BaAl_2O_4 (1000^\circ C, 10h); (c) 8\%BaO/Al_2O_3 \\ \mbox{(1000^\circ C, 10 h); (d) } 20\%BaO/Al_2O_3 (1000^\circ C, 10 h); \\ \mbox{(e) } H_2O \mbox{ treatment of (d); and (f) } 120^\circ C \mbox{ dry for (e).} \end{array}$

Ba-containing samples before the $BaAl_2O_4$ formation by high temperature thermal treatment. These results clearly demonstrate the water-induced decomposition of $BaAl_2O_4$ into separate Al and Ba-containing phases (BaO and/or $Ba(OH)_2$).

Significance

The results of this solid state 27 Al NMR study clearly show the formation and decomposition of a BaAl₂O₄ phase which can result in the thermal deactivation of NOx storage-reduction catalyst.

References

- 1. D.H. Kim, Y.-H. Chin, J.H. Kwak, J. Szanyi, and C.H.F. Peden, *Catal. Lett.* **105**, 259 (2005).
- T. Szailer, J.H. Kwak, D.H. Kim, J. Szanyi, C. Wang, and C.H.F. Peden, *Catal. Today* 114, 86 (2006).
- 3. D.H. Kim, J.H. Kwak, J. Szanyi, and C.H.F. Peden, Appl. Catal. B in press.