Evidence of Entropy Effects in the Reduction of Ceria-Zirconia Solid Solutions

Parag R. Shah¹, Taeyoon Kim¹, Gong Zhou¹, Paolo Fornasiero², and Raymond J. Gorte¹*

¹Department of Chemical and Biomolecular Engineering, University of Pennsylvania Philadelphia, PA 19104, USA
²Chemistry Department, INSTM – Trieste RU and Centre of Excellence for Nanostructured Materials, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy.

*gorte@seas.upenn.edu

Introduction

Ceria-zirconia solutions are widely used for oxygen-storage capacitance (OSC) in automobiles [1], and ceria-based catalysts are finding new catalytic applications as supports [2,3]. The role of ceria in each of these applications almost certainly involves oxidation and reduction of ceria. However, while thermodynamic data for oxidation and reduction of bulk ceria are available [4], there is little analogous information on ceria-zirconia mixed oxides, even though these materials are well known to be more easily reduced than pure ceria. Hence, in our laboratory flow system experiments [5] and coulometric titration [6] have been used to determine the thermodynamics of oxidation of ceria-zirconia solid solutions.

Materials and Methods

Ceria-zirconia solid solutions of various compositions were prepared by the citric acid method [7]. X-ray diffraction was used to characterize the samples. Flow system experiments and coulometric titration experiments were used to obtain equilibrium oxygen fugacity ($P(O_2)$) as a function of temperature and stoichiometry of the samples. This data was used to calculate the thermodynamic properties for oxidation of the ceria-zirconia solid solutions, using the following equations:

$$n \operatorname{Ce}_{y} \operatorname{Zr}_{1,y} \operatorname{O}_{2,x} + \operatorname{O}_{2} \rightleftharpoons n \operatorname{Ce}_{y} \operatorname{Zr}_{1,y} \operatorname{O}_{2,x+2/n}$$

$$K = \frac{1}{P(O_{2})_{eq}} \qquad \qquad \Delta G^{\circ} = -RT \ln K$$

$$\Delta H^{\circ} = R \frac{\partial \ln P(O_{2})_{eq}}{\partial (1/T)} = -RT^{2} \frac{\partial (\Delta G^{\circ} / RT)}{\partial T} \qquad \Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T}$$

Results and Discussion

It was found that the differential oxidation enthalpy for both $Ce_{0.81}Zr_{0.19}O_2$ and $Ce_{0.25}Zr_{0.75}O_2$ was similar, between -500 and -550 kJ/mol O₂, and independent of the extent of reduction [6]. It was lower than the oxidation enthalpy of ceria of around -780 kJ/mol O₂, which can probably explain the ease of reduction of ceria-zirconia mixed oxides. Furthermore, there was a step change in - Δ S of reduction for $Ce_{0.81}Zr_{0.19}O_2$, from ~250 J/mol K to less than 100 J/mol K, after removal of approximately one oxygen for every two Zr⁺⁴. To explain this thermodynamic data a model was presented (fig. 1) which views the reduction of ceria-zirconia

as removal of oxygen to form "pyrochlore-like" structures, with some of the changes in reducibility associated with the number of sites from which oxygen can be removed.

Significance

This work gives insight into thermodynamic and redox properties of ceria-zirconia solid solutions.

Figure 1. Schematic diagram of the proposed pyrochlore-like cluster. A. Formation of the "Pyrochlore-Like" Structure. B. The two step-reduction of $Ce_{0.81}Zr_{0.19}O_2$ (only a part of the lattice structure is shown).

References

- Sugiura, M., Ozawa, M., Suda, A., Suzuki, T. and Kanazawa, T. Bulletin of the Chemical Society of Japan 78, 752 (2005).
- 2. Ghenciu, A. F. Current Opinion in Solid State & Materials Science 6, 389 (2002).
- Farrauto, R., Hwang, S., Shore, L., Ruettinger, W., Lampert, J., Giroux, T., Liu, Y., and Ilinich, O. *Annual Review of Materials Research* 33, 1 (2003).
- 4. Mogensen, M., Sammes, N. M. and Tompsett, G. A. Solid State Ionics 129, 63 (2000).
- 5. Kim, T., Vohs, J. M. and Gorte, R. J. Ind. Eng. Chem. Res. 45, 5561 (2006)
- Shah, P. R., Kim, T., Zhou, G., Fornasiero, P. and Gorte, R. J. Chemistry of Materials 18, 5363 (2006)
- Kaspar, J., Fornasiero, P., Baiducci, G., Di Monte, R., Hickey, N. and Sergo, V. Inorg. Chim. Acta 349, 217 (2003).