A QM/MM Study of Potential Steps in Direct Propylene Epoxidation Using H₂ and O₂ on Au/TS-1 Catalysts

Kendall T. Thomson*, Ajay Joshi, and W. Nicholas Delgass Purdue University, School of Chemical Engineering, West Lafayette, Indiana, USA 47907 *thomsonk@een.purdue.edu

Introduction

Production of propylene oxide (PO) in a single step with no side products has been a long-sought industrial target. While a liquid-phase $H_2O_2/TS-1$ based route to PO appears imminent,¹ due to handling problems and cost associated with H_2O_2 , researchers have also focused on direct gas-phase propylene oxidation using H_2 and O_2 over Au/Ti catalysts.²⁻⁴ The assumption that such catalysts operate by (1) H_2O_2 formation on Au and (2) propylene epoxidation on Ti using that H_2O_2 is supported by recent literature.^{5,6}

Materials and Methods

Since studies of Au/TS-1^{7,8} suggest that part of the epoxidation activity is associated with Au/Ti sites inside the zeolite channels, we have employed the hybrid quantum-mechanics/molecular-mechanics (QM/MM) approach—see Figure 1, augmented with full thermochemistry (298.15 K, 1 atm), to develop epoxidation mechanisms inside the TS-1 pores (5.5 Å). We considered both non-defect and Si-vacancy defect Ti-sites with and without Au₃ adsorbed⁹ on them and investigated OOH/H₂O₂ formation pathways.¹⁰

Results and Discussion

Consistent with experiments on Au/SiO₂,¹¹ we found that O₂ pre-adsorbed on Au₃ enhanced the dissociative adsorption of H₂ to form stable OOH species ($\Delta E_{act} = 7.7$ kcal/mol, Au₃/Ti-non-defect). We speculate that an H₂O₂ formation pathway similar to that found on gasphase Au clusters^{12,13} is likely to operate on Au₃/Ti-non-defect sites—see Figure 2.. H₂O₂ formed on these sites can then migrate to PO-producing sites via diffusion along the pore walls. Assuming such availability of H₂O₂, we modeled three different sites for propylene epoxidation: (1) Si-defect, (2) Ti-defect, and (3) Au₃-Ti-defect.¹⁰ We found that formation of Si-OOH species due to reaction of H_2O_2 with a metal-vacancy Si-defect sites is both kinetically $(\Delta E_{act} = 33.2 \text{ kcal/mol})$ and thermodynamically unfavorable ($\Delta E = +2.8 \text{ kcal/mol})$. However, it is much easier ($\Delta E_{act} = 16.8$ kcal/mol) to form Ti-OOH species (and water) by attacking the Tidefect site with H_2O_2 ($\Delta E = -8.0$ kcal/mol). Propylene reacts with these Ti-OOH species to form propylene oxide with $\Delta E_{act} = 15.8$ kcal/mol and $\Delta E = -51.3$ kcal/mol. Interestingly, we predict that the activation barrier to form Ti-OOH species on Au₃/Ti-defect sites is significantly higher ($\Delta E_{act} = 28.1$ kcal/mol) than that for the Ti-defect site without Au₃ and that OOH species formed on Au₃ in an Au₃/Ti-defect site are likely to decompose rapidly to form water ($\Delta E_{act} = 1.3$ kcal/mol) due to strong interaction with the silanol (Si-OH) groups around the defect. Thus, we conclude that the sequential propylene epoxidation pathway is kinetically unfavorable on the Au₃/Ti-defect site but is favorable with a combination of Au₃/Ti-non-defect and Ti-defect sites.

Significance

The commercialization of a gas-phase heterogenous catalyst for production of propylene oxide would lead to more environmentally friendly processes in what is a \$9+ billion per year industry. Understanding the underlining mechanisms for these systems is an important step for improving catalytic properties.

Figure 1. QM/MM molecular model of a Ti/Si-vacancy site in the TS-1 lattice. **Figure 2.** Au₃ cluster anchored near a Si-vacancy site (defect) adjacent to Ti in TS-1 lattice.

References

- 1. In Chemical Engineering Progress, October 2003, 14.
- 2. Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566.
- Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijn, J. A. Ind. Eng. Chem. Res. 1999, 38, 884.
- 4. Stangland, E. E.; Stavens, K. B.; Andres, R. P.; Delgass, W. N. J. Catal. 2000, 191, 332.
- 5. Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. *Chem. Commun.* **2002**, 2058.
- Sivadinarayana, C.; Choudhary, T. V.; Daemen, L. L.; Eckert, J.; Goodman, D. W. J. Am. Chem. Soc. 2004, 126, 38.
- 7. Yap, N.; Andres, R. P.; Delgass, W. N. J. Catal. 2004, 226, 156.
- 8. Taylor, B.; Lauterbach, J.; Delgass, W. N. Appl. Catal. A 2005, 291, 188.
- 9. Joshi, A. M.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. B 2006, Submitted.
- 10. Joshi, A. M.; Delgass, W. N.; Thomson, K. T., Manuscript in Preparation.
- 11. Naito, S.; Tanimoto, M. Chem. Commun. 1988, 832.
- 12. Wells, D. H.; Delgass, W. N.; Thomson, K. T. J. Catal. 2004, 225, 69.
- 13. Joshi, A. M.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. B 2005, 109, 22392.