In situ FTIR Study of Photocatalytic CO₂ Reduction on Photocatalysts

Chao-Wei Huang and Jeffrey C. S. Wu* Department of Chemical Engineering, National Taiwan University Taipei, Taiwan 10617, R. O. C. *cswu@ntu.edu.tw

Introduction

The use of transition-metal loaded titania (TiO₂) has been extensively studied as a photo catalyst in photoreactions. Unlike traditional catalysts drive chemical reactions by thermal energy, semiconducting photocatalysts can induce chemical reactions by inexhaustible sunlight. Greenhouse gases such as CO_2 , CH_4 and CFCs are the primary causes of global warming. CO_2 can be transformed into hydrocarbons in a photocatalytic reaction. The advantage of photo reduction of CO_2 is to use inexhaustible solar energy. One of the most promising photocatalysts for CO_2 photoreduction was supported copper titania which was previously synthesized using sol-gel method in our lab. Our previous results showed that Cu promoted CO_2 reduction activity and improved the selectivity of the product toward methanol [1]. However, the mechanisms of photocatalytic CO_2 reduction on TiO₂ under UV irradiation have not explored widely. Knowledge of elementary steps in photocatalyst.

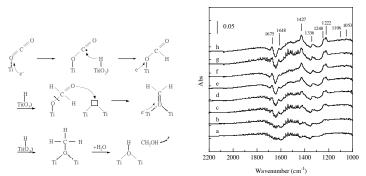
A heterogeneously photocatalytic reaction usually takes a longer time, i.e., hours or days, than a thermal reaction. In our previous study, the intermediates of photocatalytic NO oxidation was successfully analyzed by in situ FTIR spectroscopy [2]. In the present work, we applied diffuse reflectance technique to study photocatalytic CO_2 reduction on the TiO₂ surface via in situ Fourier Transform Infrared (FTIR) spectroscopy in time sequence. Copper loaded TiO₂ photocatalyts was also included in this work to elucidate the metal effect. The focus was placed on the intermediates and products generated on the surface by photo excited TiO₂. Possible mechanism of the photocatalytic CO₂ reduction was also proposed.

Materials and Methods

The photoreduction of CO₂ on TiO₂ and Cu/TiO₂ was studied using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under UV irradiation. Zerograde air, high-purity He and ultra-purity CO₂ (99.999 v% from Air Products USA) were used in the reaction system. In order to reduce water interference, air and He passed through a moisture adsorbent before entering the photoreactor. A clear IR signal was obtained using these dehumidifying apparatus. A catalyst of 140 ~170 mg was pretreated inside the photoreactor under air flow and UV irradiation at 500°C to remove residue hydrocarbons. The IR scanning range was 4000 ~ 650 cm⁻¹ with 4 cm⁻¹ resolution using a Mercury-Cadmium-Telluride detector in a Nexus 470 IR spectrometer (Thermo Nicolet). Each IR spectrum was obtained by 16-64 scans.

Results and Discussion

As well known in photocatalysis, electron-hole pairs are photogenerated in a semiconductor such as TiO_2 under UV irradiation, then a photocatalytic reaction would be initiated. Water molecule is first dissociated into H⁺ and OH⁻ ions. Hydrogen atom is produced


from H^+ by accepting an electron and adsorbed on the surface. Surface adsorbed hydrogen will be used to reduce adsorbed CO₂ to hydrocarbons as shown in the Scheme.

As shown in the Figure, UV irradiation quickly induces the increasing of bicarbonate (1675, 1427 cm⁻¹) and carbonate (1336 cm⁻¹). The photo generated OH group and oxygen vacancy further increase the amount of bicarbonate and carbonate which are converted from gas-phase CO₂. However, once bicarbonate or carbonate are formed, they become very stable on the TiO₂ surface and no further conversion is possible. Formic acid (1618 cm⁻¹), formaldehyde (1106 cm⁻¹) and methoxy (1053 cm⁻¹) emerge and increase after UV irradiation as shown in the Figure. Obviously these species are produced from the photoreduction of adsorbed CO₂. They are the intermediates in the elementary steps of CO₂ photoreduction on TiO₂. Other possible intermediates may also exist but cannot be detected due to the limitation of IR measurement.

The scheme illustrates the mechanism of adsorbed CO₂ which is further photocatalytically reduced to hydrocarbons under UV irradiation. Starting from the adsorbed CO₂, format (HCOO) is formed by accepting an electron and adding one hydrogen atom. Dioxymethylene (H₂COO) is formed from the format by adding one hydrogen atom, then migrates to the adjacent oxygen vacancy to form formaldehyde (H₂CO) by accepting one electron. In this step, one oxygen is detached from dioxymethylene and left on the previous TiO₂ site. Methoxy (CH₃O) is then formed by adding another hydrogen atom. Finally methoxy reacts with free surface H₂O and converts to methanol, then leaves one OH group on TiO₂ surface after methanol is desorbed from the surface.

Significance

Various intermediates and species on TiO_2 were observed during the CO_2 photoreduction using in situ FTIR. The mechanism of photoreduction of CO_2 is revealed.

Scheme : Proposed mechanism of enhanced photocatalytic CO_2 reduction on $CuTiO_2$ **Figure:** IR spectra of CO_2 photoreduction on TiO_2 under UV irradiation (a)10sec,(b)1min,(c)10min,(d)20min,(e)30min,(f)1hr, (g)1hr30min,(h)2hrs, CO_2 adsorbed TiO_2 before the UV irradiation is used as the background.

References

- 1. I-H. Tseng, W. C. Chang, J. C. S. Wu, Appl. Catal. B:Environ. 37, 37(2002)
- 2. J. C. S. Wu, Y.-T. Cheng, J. Catal., 237, 393 (2006)