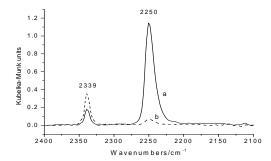
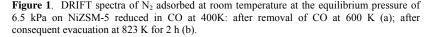
Formation and thermostability of Ni⁺ cations in NiZSM-5. Testing by DRIFTS of adsorbed N₂, H₂, D₂ and EPR spectroscopy

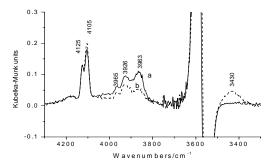
Alexander I. Serykh^{1,2}* and Michael D. Amiridis² ¹N.D.Zelinsky Institute of Organic Chemistry of RAS,, Leninsky pr. 119991 Moscow (Russia) ²Department of Chemiclal Engineering. University of South Carolina, SC 29208 (USA) *serykh@engr.sc.edu

Introduction

High-silica zeolites modified by transition metal cations possess interesting catalytic and adsorption properties. Cobalt and copper modified ZSM-5 for example, are active for selective reduction of NO_x by hydrocarbons in excess oxygen. Copper-modified ZSM-5 zeolites have also attracted significant attention due to their activity in the direct decomposition reaction of NO_x. FeZSM-5 - which is active SCR catalyst – is very stable under reaction conditions. It was reported that microwave discharge greatly enhance the conversion of NO to N₂ over NiZSM-5 reaching almost 100% conversion [1]. ZSM-5 zeolite can stabilizes Ni⁺ [2] and Co⁺ [3] ions in the presence of CO. Co²⁺/Co⁺ and Ni²⁺/Ni⁺ redox couples probably operate in the HC-SCR [3]. In the present study we have examined the formation and thermal stability of Ni⁺ cations in ZSM-5 zeolite by means of DRIFT spectroscopy of adsorbed N₂, H₂ and D₂ molecules and EPR spectrometry.


Materials and Methods


The starting material was the hydrogen form of ZSM-5 zeolite (Alsi-Penta, Si/Al=22). Nickelcontaining samples were prepared by triple wet ion exchange of this material with 0.1 M nickel acetate aqueous solution. After the third exchange the material was washed in distilled water, dried at 380 K and calcined in flowing oxygen at 673 K for 1 h.


Diffuse-reflectance measurements were performed using a home-made diffuse-reflectance attachment. The spectra were recorded both at room temperature and at 77K using a Nicolet "Impact-410" spectrophotometer. Reduction of the samples by CO was conducted in the IR ampoule at a pressure of 7 kPa. The DRIFT spectra of adsorbed N₂ were recorded at ambient temperature while the spectra of adsorbed H₂ and D₂ were measured at 77 K. EPR spectra were recorded at ambient temperature in X band with a Bruker EPR-200 spectrometer.

Results and Discussion

A NiZSM-5 sample reduced in CO at 550 K and evacuated at 600 K was tested by adsorption of dinitrogen at ambient temperature (Fig1a). A band observed at 2250 cm⁻¹ was assigned to N₂ adsorbed on Ni⁺ cations while a band at 2339 cm⁻¹ was assigned to N₂ adsorbed on Ni²⁺ cations. Ni⁺ cationic sites are of low thermal stability and can be destroyed by evacuation at high temperatures (Fig.1b) due to disproportionation reaction $2Ni^+ > Ni^{2+}+Ni^0$. Prolonged heating of the sample in CO results in the restorations of Ni⁺ sites: Ni²⁺+Ni⁰+4CO \rightarrow 2Ni⁺(CO)₂. NiZSM-5 was also tested for the adsorption of H₂ and D₂ molecules at 77 K. Fig.2 shows DRIFT spectra of H₂ adsorbed on NiZSM-5. The bands at 4105 cm⁻¹ and 4125 cm⁻¹ belong to H₂ adsorbed on acidic and silanol hydroxyls respectively [4]. The bands at 3965, 3926 and 3963 cm⁻¹ can be assigned to H₂ adsorbed on Ni²⁺ eations. Finally, the band at 3430 cm⁻¹ which appears after prolonged treatment with CO was ascribed to H₂ adsorbed on Ni⁺ cationic sites which appear due to reaction: Ni²⁺+Ni⁰+4CO \rightarrow 2Ni⁺(CO)₂. The Ni⁺ sites are also characterized by EPR signals at g_{\parallel} =2.513 and g_{\perp} =2.114.

Figure2. DRIFT spectra of H_2 adsorbed at 77 K and at the equilibrium pressure of 13.3 kPa on NiZSM-5 reduced in CO: followed by high temperature evacuation at 823 K (a); after consequent prolonged treatment with CO at 400 K for 2 h and removal of CO at 600 K (b).

Significance

The presence of Ni⁺ cations was confirmed in NiZSM-5 samples following characterization by DRIFTS and EPR spectroscopy. The thermal stability of these cations was also examined.

References

- 1. Tang, J., Zhang, T., Ma, L., Li L., Zhao J., Zheng M., Ling L., Catal Lett. 73, 193 (2001).
- 2. Hadjiivanov, K., Knozinger, H. and Mihailov, M., J.Phys. chem. B. 106, 2618 (2002).
- Hadjiivanov, K., Tsyntsarski, B., Venkov, Tz., Daturi, M., Saussey, J., Lavalley, J.-C., Phys. Chem. Chem. Phys. 5(2), 243 (2003).
- 4. Kustov, L.M., Borovkov, V. Yu., Kazansky V.B., Kinet. Katal., 1984, 25,471 (Russian).