Resonance Raman Spectroscopy of Catalysts and Supports

Hack-Sung Kim^{1,2}, Jeffrey Elam³, Zili Wu¹, and Peter C. Stair^{1,2}* ¹Department of Chemistry, Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, USA ² Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ³ Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439, USA * pstair@northwestern.edu

Introduction

Raman spectroscopy has been extensively used to characterize supported catalytic oxide species, but its application to the supporting oxide is relatively rare because the spectra are generally dominated by bulk signals. The ability to select the excitation wavelength in Raman spectroscopy makes it possible to control the species detected: supported phases, support films, or bulk support, by avoiding or taking advantage of the resonance enhancement effect as well as to minimize fluorescence interference.

Here we present examples of selecting the excitation wavelength for Raman spectroscopy of catalyst materials: 1) Detection of a thin-film, TiO₂ support and influence of vanadia (VO_x) monolayers on the titania structure. 2) The observation of V=O second and third harmonic bands in resonance Raman spectra which leads to an estimate for the V=O dissociation energy. 3) Raman spectroscopy of weakly scattering alumina supports, including γ -, δ -, θ -, and α -Al₂O₃ and the effect of surface vanadia on the *alumina* vibrational spectra.

Materials and Methods

Catalysts consisting of a 1 nm TiO₂ film and VO_x supported on the TiO₂ film were synthesized in nanostructured anodic aluminum oxide (AAO) membrane channels by atomic layer deposition (ALD) using Al(CH₃)₃, TiCl₄, OV(OC₃H₇)₃, and water.¹ VO_x on θ -alumina was prepared by incipient wetness impregnation using NH₄VO₃. γ -, δ -, θ -, and α -Al₂O₃ supports were obtained from Aldrich or Johnson-Matthey.

Raman spectra were measured using a tunable laser (Ti:Sapphire oscillator pumped by a diode-pumped, intracavity frequency-doubled Nd:YLF laser) with second, third, fourth harmonic conversion to produce wavelengths 210 nm to 900 nm and a triple-stage spectrometer coupled to a liquid nitrogen-cooled CCD.

Results and Discussion

Fig. 1 compares Raman spectra for coated AAO membranes excited at 287 nm. Only fluorescence is detectable with excitation at 430 nm. In spectrum (a) the AAO has been coated with 1-nm Al₂O₃ and 1-nm TiO₂. A broad, featureless band with a maximum at about 650 cm⁻¹ indicates the presence of an amorphous TiO₂ film. Spectra (b) and (c) show that the amorphous TiO₂ converts to the anatase and brookite structures at <120°C when 1 ML of vanadia is present. Generally, anatase TiO₂ is the support for vanadia catalysts because of a good crystallographic fit between the oxides. The spectra in Fig. 1 show that the presence of the VO_x strongly influences the structure of the TiO₂ support. Further phase transformations

from anatase/brookite to rutile TiO_2 depends on catalytic reaction conditions and possibly the method of VO_x deposition method.

Figure 1. UV Raman spectra: (a) 1 nm ALD TiO_2 on 1 nm ALD Al_2O_3 on AAO membrane, (b) 1 ML VO_x on (a), (c) anatase TiO_2 powder. Raman bands of anatase and brookite TiO_2 are marked with 'A' and 'B', respectively.

Raman spectra for hydrated and dehydrated VO_x supported on θ -alumina exhibit not only the fundamental VO stretching vibrations in the 900-1100 cm⁻¹ region, but also overtone bands in the 1800-2100 cm⁻¹ region. The V=O bond dissociation energies estimated from the band positions of dehydrated VO_x on θ -alumina are two-times larger than typical ranges of V=O bond dissociation energies for crystalline V₂O₅ and isolated VO_x on silica or on α -Al₂O₃. This indicates that the vanadyl O atoms on θ -alumina are much more difficult to remove.

The Raman spectra of Al-O stretching vibrations were measured for γ -alumina with 220 nm excitation. Spectra for other phases of alumina support have also been measured and significant effects on Al-O band intensities by surface VO_x species were observed.

Significance

This work shows the first successful Raman measurements for VO_x on titania/alumina/AAO membranes and for γ -alumina. Also shows the first observation of overtone Raman bands associated with the surface VO species on alumina.

References

1. Stair, P. C.; Marshall, C.; Xiong, G.; Feng, H.; Pellin, M. J.; Elam, J. W.; Curtiss, L.; Iton, L.; Kung, H.; Kung, M.; Wang, H.-H., *Top. Catal.* **2006**, 39, (3-4), 181-186.