Active Gold Species during Preferential Oxidation of CO in H₂ over Au/CeO₂ Catalysts

José A. Hernández-Maldonado, <u>Sergio A. Gómez</u>*, and Gustavo A. Fuentes Department of Process Engineering, Universidad A. Metropolitana-Iztapalapa, A.P. 55-534, 09340 México, D.F., (México) *sgomez@xanum.uam.mx

Introduction

Recently, considerable effort has been made in the design of suitable catalysts for the preferential oxidation of CO (PROX) required for producing high purity H_2 for the operation of low-temperature fuel cells. PROX catalysts should meet the requirements of high CO oxidation activity (to < 10 ppm) and high selectivity (> 50%) in the 80-110°C temperature range in the presence of H_2 (50-75 vol%), CO₂ (20-24 vol%) and H_2O (2-10 vol%) [1,2]. In this case of WGS [2] and PROX [1,3] reactions, Au catalysts have shown to be very active, but there are still open questions regarding the nature of the active sites and of ways to stabilize them. The proposed active species include metallic Au nanoparticles, isolated Au cations, Au nanoparticles-support interface, and support structures with redox properties [4].

In this work we demonstrate that in the case of Au/CeO₂, both Au nanoparticles and cationic Au species are present on catalysts, their ratio depending on the Au content. All of our catalysts show high activity during the PROX reaction in the presence of 50-75% H₂ at 80-110°C at GHSV = 12000 h⁻¹. However, the activity is a function of the Au content and of the concentration of O₂ and CO₂ in the feed, but there is no effect of H₂O. The reverse WGS reaction (H₂ + CO₂ \rightarrow CO + H₂O) starts at 252°C

Materials and Methods

We prepared Au/CeO₂ catalysts having 0-1.3 Au wt. % by the deposition precipitation method. PROX was performed at 12000 h^{-1} using 0.8-1% CO, 0.4-1% O₂, 5-50% H₂, 0-10% H₂O, 0-24% CO₂, and N₂. Catalysts were characterized by XRD, diffuse reflectance in the UV-Vis region, CO-FTIR, Raman and XANES.

Results and Discussion

Our lowest gold content catalyst, i.e., 0.32%-Au/CeO₂, was highly active in the PROX reaction; X_{CO2} and S_{CO2} were 93% and 95% at 110°C, respectively. On the other hand, catalysts having higher Au content, i.e., 1.32 Au wt. %, had X_{CO2} and S_{CO2} of 81% and 83% at 65°C, respectively (Figure 1). This behavior was linked to the presence of cationic Au, with changes in CeO₂ lattice constant, and to the presence of gold nanoparticles as well. The ratio of cationic gold species to metallic gold nanoparticles on Au/CeO₂ catalysts strongly depends on gold content. This is discussed based on different characterization techniques as XRD, UV-vis, Raman, CO-FTIR and XANES spectroscopies.

The catalytic activity during PROX reaction on the Au content depends on the nature of gold species on catalysts. In general, the higher the gold content, the higher the amount of gold

nanoparticles and the lower the light-off temperature of both CO and H_2 oxidations during PROX reaction, but also the lower the maximum CO conversion and the selectivity.

Significance

Results presented here show that both gold nanoparticles and gold cationic species are present on Au/CeO₂. The Au_{np}/Au^{δ^+} ratio increases with Au content. Light-off temperatures, maximum conversions and selectivity for CO oxidation during PROX depend on the ratio of Au_{np}/Au^{δ^+} . We present a specific model that accounts for the contribution of each type of Au site.</sup>

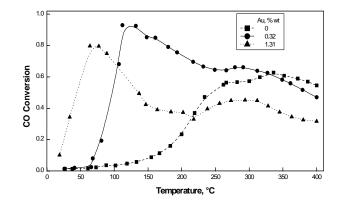


Figure 1. CO oxidation in H₂ as a function of Au content on Au/CeO₂ catalysts.

Acknowledgements

We acknowledge the support of CONACYT (project 42292 and a graduate fellowship to JAHM).

References

- Landon, P., Ferguson, J., Solsona, B. E., García, T., Carley, A.F., Herzing, A.A., Kiely, C.J., Golunski, S.E., and Hutchings, G.J., *Chem. Commun.* 3385 (2005).
- Bond G.C., Louis C., Thompson D.T. in "Catalysis by Gold", Catalytic Science Series, Vol 6. Series Editor: Hutchings G. Imperial College Press 2006. Ch 11.
- 3. Fu Q., Deng W., Saktsburg H., Flytzani-Stephanopoulos M. Appl. Cat. B 56, 57 (2005).
- 4. Fierro-González J.C. and Gates B.C. Gold 2006, Abstract 107, Limerick, Ir, Oct (2006).
- Hutchings G.J., Hall M.S., Carley A.F, Landon P., Solsona B.E., Kiely C.J., Herzing A., Makkee M., Moulijn J.A., Overweg A., Fierro-González J.C., Guzmán J., Gates B.C., *J.Catal.* 242, 71-81 (2006).