Partial Oxidation of Methane on Rh/CeZrO₂ Catalysts

Raquel Lima Oliveira¹ and <u>Fabio B. Passos¹*</u> ¹Departamento de Engenharia Química e de Petróleo – Universidade Federal Fluminense Niterói, RJ, 2420-240, (Brazil) *fbpassos@vm.uff.br

Introduction

Besides the interst of producing synthesis gas efficiently foi use in GTL plants, there has been a lot of interest in developing compact reformers, able to produce a H_2 rich stream [1] from a hydrocarbon feedstock.. Rh catalysts are well known catalyts for the partial oxidation of methane and the use CeZrO₂ as support proved to be beneficial for this reaction for Pt supported catalysts [2]. In this work, we investigate the use of CeZrO₂ as supports for Rh catalysts used in the partial oxidation of methane.

Materials and Methods

The catalysts were prepared by incipient wetness using Rh(NO₃)₃ (final Rh content equal to 1.5%) as precursor. γ -Al₂O₃, ZrO₂ and CeO₂ supports were calcined at 800°C for 1 hour. The CeZrO₂ support was obtained by a co-precipitation method. An aqueous solution of cerium (IV) ammonium nitrate and zirconium nitrate was prepared in order to obtain the desired amounts of of CeO₂ and ZrO₂. Then, the ceria and zirconium hydroxides were co-precipitated by the addition of an excess of ammonium hydroxide. Finally, the precipitate was washed with distillated water and calcined at 800°C for 1h. The prepared catalytsts were characterized by temperature programmed reduction (TPR) and the number of active sites was estimated by uing the cyclohexane reaction at 270 °C a structure insensitive reaction. [2]. The reaction mechanism was investigated using temperature programmed surface reaction (TPSR) experiments using a mixture of 5% O₂/He and 20% CH₄/He with flow rates of 40 mL/min and 20 mL/min, resulting in CH₄:O₂:He ratio of 2:1:27

Results and Discussion

TPR profile for the 1.5% Rh/Al₂O₃ catalyst presented a peak at 156°C, which may be attibuted to the reduction of Rh₂O₃ [3], while the 1.5% Rh/CeO₂ catalyst showed peaks at 97°C, 225°C e 975°C which may be attributed to the reduction of Rh₂O₃, surface ceria and to bulk ceria, respectively. For 1.5% Rh/ZrO₂, there was a peak at 207°C corresponding to Rh₂O₃ reduction (4). TPR of Rh/CeZrO₂ catalysts indicated an increase in ceria reduction due to the presence of rhodium

The cyclohexane reaction rate can be interpreted as a measure of the amount of surface active sites. When we compare the reaction rates for the studied catalyst, the following order of apparent dispersion was obtained $Rh/Ce_{75}Zr_{25}O_2 > Rh/Ce_{50}Zr_{50}O_2 \approx 1,5\% Rh/Ce_{25}Zr_{75}O_2 \approx Rh/CeO_2 > Rh/ZrO_2 \approx Rh/Al_2O_3.$

The TPSR results for Rh/Al_2O_3 were consistent to a indirect mechanism for the partial oxidation of methane. In the beginning of the reaction, rhodium particles are covered by oxygen making the catalyst active for methane combustion. Then, there is the formation of CO and H_2 by CO₂ and H_2O reforming of methane. On the other hand, Rh/CeO_2 and Rh/ZrO_2 and

Rh/CeZrO₂. presented similar TPSR profiles which indicated a direct mechanism for the formation of synthesis gas.

Significance

For Rh/Al₂O₃, catalyst, temperature programmed surface reaction (TPSR) analysis showed the partial oxidation of methane occurs in two steps: combustion of methane followed by H2O and CO2 reforming of unreacted methane, while Rh/CeO₂ and Rh/ZrO₂ and Rh/CeZrO₂.a direct mechanism was observed.. The difference in the mechanisms was explained by different surface oxygen species concentration in these catalytic systems. This difference may also be responsible for enhaced stability in the reaction for long time runs.

Figure 1. 1,5% Rh/CeO2-TPSR spectra in flowing He, CH₄ and O₂.

References

- 1. Z. Tian, O. Dewaele, G.B. Marin.. Catal. Lett. 1999, 57, 9.
- L.V. Mattos, E.R. de Oliveira, P.D. Resende, F.B. Noronha, and F.B. Passos, Catal. Today Catal. Today, 77 (2002) 245.
- 3. H.C. Yao, M. Sieg, H.K. Plummer. J. Catal., 1979, 59, 365.
- J.A Wang,, T. Lopes, X. Bokhimi, O. Novaro, Journal of Molecular Catalysis, 2005, 239-256