Catalytic Partial Oxidation of n-Tetradecane on Rh and Sr Substituted Pyrochlore Catalysts

Daniel J. Haynes^{1*}, David A. Berry², Dushyant Shekhawat², Todd H. Gardner², James J. Spivey¹ ¹Louisiana State University, Baton Rouge, LA 70803 ²National Energy Technology Laboratory, 3610 Collins Ferry Road Morgantown, WV, 26507-0880 *corresponding author: DHayne5@lsu.edu

Introduction

Catalyst deactivation by the high levels of sulfur and aromatics limits the catalytic partial oxidation (CPOX) of diesel fuel into a H₂-rich stream for fuel cells. These species poison traditional supported metal catalysts because they adsorb strongly to electron dense metal clusters and promote the formation of carbon on the surface. The substitution of noble metals into a thermally stable pyrochlore structure (A₂B₂O₇) may reduce cluster size and prevent deactivation by sulfur and aromatics[1]. Rhodium has been identified as a candidate CPOX catalyst because of its high selectivity to synthesis gas and resistance to carbon formation[2]. In the work presented here, Rh and Rh + Sr were substituted into a La₂Zr₂O₇ pyrochlore structure to give La₂Rh_yZr_(2-y)O_(7- ξ_1) (LRZ) and La_(2-x)Sr_xRh_yZr_(2-y)O_(7- ξ_2) (LSRZ) catalysts, respectively. Their resistance to deactivation and carbon formation were examined by the CPOX of a mixture of model compounds to represent a diesel fuel. The results were compared to a commercial Rh/Al₂O₃ catalyst.

Materials and Methods

The pyrochlore catalysts were prepared using a variation of the Pechini method[3]. The experiments were run in a fixed bed continuous-flow reactor with an O/C = 1.2, a GHSV = 50,000 h⁻¹, 900 °C, and 2 atm. n-tetradecane (TD), 1-methylnaphthalene (MN) and dibenzothiophene (DBT) were used as model diesel fuel compounds. CPOX of TD for 5 h was used to screen catalysts for activity and selectivity. In a separate experiment, CPOX of TD was carried out for 1 h, then 5 wt-% MN and 1000 ppmw DBT in TD was run for 2 h, then the feed was switched back to TD for 2 h to examine recovery. Carbon deposition was measured by a temperature programmed oxidation (TPO) using 5% O_2/N_2 and a ramp rate of 1°C/min.

Results and Discussion

 H_2 yields after reforming TD for 5 h are given in **Table 1** for each catalyst. Rh/Al₂O₃ is highly active for the CPOX of TD with minimal carbon formation. The Rh-only pyrochlore (LRZ) has activity similar to that of the Rh/Al₂O₃, and also has minimal carbon formation. Substitution of Sr with Rh increases the activity of the catalyst and reduces the amount of carbon formed. The observed performance increase may be due to increased lattice oxygen mobility that results from the formation of structural defects after substitution of Sr²⁺ for La³⁺ [4].

Table 1. H₂ yield and carbon formed after 5 hrs of reforming TD at 900°C and 50,000h⁻¹.

	Blank	Equil	Rh/Al	LZ	LRZ	LSRZ
H ₂ Yield (%)	17.0	85.0	82.0	75.0	80.0	85.0
Carbon Formed $(g_{carbon}/g_{cat.})$	0.4	0.0	0.27	0.29	0.32	0.17

Figure 1 shows the H₂ yield during the experiments in which MN and DBT were added. After the feed is switched to the MN + DBT/TD mixture, the H₂ yields drop for each catalyst. LZ and Rh/Al₂O₃ are deactivated immediately by the sulfur and aromatic compounds because the contaminates adsorb strongly to their surface. Upon removal of MN and DBT the two catalysts are unable to recover activity. Substitution of Rh into the structure modifies the properties of Rh metal and creates a surface that is less susceptible to deactivation by the DBT and MN. LSRZ recovers activity quickly, reaching pre-exposure H₂ yield within minutes, probably because the oxygen mobility prevents the accumulation of contaminants as well as carbon.

Figure 1. H₂ yield step response plot after the addition of 5-wt% MN and 1000 ppmw DBT. Rh/Al₂O₃ (♦), LZ (■), LRZ (▲), LSRZ (●).

Significance

Substitution of Rh and Sr into a pyrochlore has modified the properties of Rh such that it retains high activity, and is less susceptible to deactivation by aromatics and sulfur.

References

- 1. Barbier, J.; Marecot, P. Journal of Catalysis 1986, 102, 21.
- 2. Hickman, D. A.; Haupfear, E. A.; Schmidt, L. D. Catalysis Letters 1993, 17, 223.
- 3. Pechini, M. P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor United States, 1963.
- Liu, D.-J.; Krumpelt, M. International Journal of Applied Ceramic Technology 2005, 2, 301.