Gold nanoparticles supported on Al$_2$O$_3$, SiO$_2$, TiO$_2$ and CeO$_2$ as catalysts for the WGS reaction.

Alberto Sandoval1, Antonio Gómez-Cortés2, Rodolfo Zanella1, José M. Saniger1, Gabriela Díaz1

1CCADET, Universidad Nacional Autónoma de México (UNAM), A. P. 70-186, México D. F. 04510, México 2Instituto de Física, UNAM, A. P. 20-364 México D. F. 01000 México. diaz@fisica.unam.mx, zanella@ccadet.unam.mx

Introduction

An emerging application for the WGS reaction is the production of hydrogen for proton exchange membrane (PEM) fuel cells. This reaction is important because it removes CO, a poison to the fuel cell electrocatalysts, which is produced during the steam reforming and/or partial oxidation reactions. Moreover WGS reaction is one of the key steps involved in the automobile exhaust processes, converting CO and water to hydrogen and CO$_2$ and including the produced hydrogen as a very effective reductant for NO$_x$ removal (1, 2). Presently great attention is paid to gold-containing catalysts because of their high catalytic activity at low temperatures in a series of important reactions, such as oxidation of CO and H$_2$ (3), reduction of NO (4), epoxidation of C$_x$H$_y$ (5), selective CO oxidation in hydrogen rich stream (6) and combustion of methane (7). In this work we compare the catalytic behavior of gold supported on reducible (TiO$_2$ and CeO$_2$) and non-reducible (SiO$_2$ and Al$_2$O$_3$) oxides for the WGS reaction in order to determine the role of the support on the catalytic activity and stability of the gold particles.

Materials and Methods

The preparation of gold nanoparticles was done using liquid phase methods, DP Urea in the case of TiO$_2$, CeO$_2$ and Al$_2$O$_3$ and cationic adsorption of [Au(en)$_2$]Cl$_3$ on SiO$_2$. Gold loading was fixed at 4 and 8 wt.%. Samples were activated by calcination in air in the range 200-400 °C. The catalysts were characterized by HRTEM, TPR and DRIFT. The WGS reaction was studied in a flow reactor at atmospheric pressure. Prior to the catalytic run the catalyst was purged in He before admittance of the reactant gas mixture which composition was 5% CO in He saturated with H$_2$O vapor (10%). The space velocity was 9,000 h$^{-1}$. At each reaction temperature reaction was allowed to stabilize before collecting any data. The exit gases were analyzed by online GC (TCD) using a Carboxen 1000 packed column.

Results and Discussion

TPR experiments showed an enhanced reduction of Au/CeO$_2$ that was evidenced by a high H/Au ratio, Figure 1. The Au/TiO$_2$ presented the lowest reduction temperature. Figure 2 shows the temperature dependence of the WGS activity for catalysts calcined at 300°C. This calcination temperature produced the more active catalysts with an initial average gold particle size of ca. 2-3 nm for all samples. The activity of gold nanoparticles on the reducible supports was much higher than the one observed on Al$_2$O$_3$ and SiO$_2$ and varied as follows for reaction temperatures below 200°C TiO$_2$>CeO$_2$>>Al$_2$O$_3$>SiO$_2$. The bare CeO$_2$ presented at this temperature about 6% CO conversion. At reaction temperatures above 200°C, the 4Au/CeO$_2$ catalyst is more active compared to the 4Au/TiO$_2$ one, Figure 2. Deactivation runs at 200°C after 24h on stream showed practically no deactivation of the Au/TiO$_2$, Au/CeO$_2$ and Au/Al$_2$O$_3$ catalysts. CO and CO$_2$H$_2$O adsorption was followed by DRIFT. Under reaction conditions absorption bands related to stable formate species which are present mostly on the bare CeO$_2$ support. Intensity of these bands decreases when Au is present on the support. After activation of the catalyst (calcined in air at 300 °C) CO adsorption is evidenced on Au when supported on TiO$_2$, CeO$_2$ and Al$_2$O$_3$. Fast conversion of formate species in Au/TiO$_2$ and Au/CeO$_2$ takes place. This explains the higher activity displayed by these catalysts.

Significance

Contribution to the understanding of support effects on the WGS activity of gold nanoparticles.

Acknowledgements

To L. Rendon of LCMIF for HRTEM images.

References