Hydrogen production from partial oxidation of ethanol over Rh catalysts

Lídia O. O. Costa^{1,2}, Adriana M. Silva¹, Lisiane V. Mattos¹, Sônia M. R. Vasconcelos³, André L. Pinto², Luiz E. P. Borges² and Fábio B. Noronha¹*,

¹Instituto Nacional de Tecnologia, Av. Venzuela, 82, 518, Rio de Janeiro, CEP 20081-310 (Brazil); ²Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Praia Vermelha, Rio de Janeiro CEP, 22290-270 (Brazil); ³NUCAT/PEQ/COPPE –Universidade Federal do Rio de Janeiro, Bloco G, sala 128, CEP 21945-970 – Rio de Janeiro (Brazil)

*fabiobel@int.gov.br

Introduction

The development of alternatives to fossil fuels has become crucial in order to meet the world demand energy and the new environmental standards. Hydrogen production to fuel cell represents a promising alternative. In Particular, H₂ production from ethanol does not contribute to the increase of CO₂ emissions. Furthermore, the infrastructure needed for ethanol production and distribution is already established in countries like Brazil and USA. However, the production of H₂ from ethanol would require the development of suitable catalysts to avoid formation of by-products such as acetaldehyde [1] and carbon deposits [2].

The aim of this work is to study the performance of Rh/CeO₂ and Rh/Y₂O₃ catalysts on the partial oxidation of ethanol.

Materials and Methods

CeO₂ support was prepared by calcination of $(NH_4)_2$ Ce $(NO_3)_6$ at 1073 K for 1h. The catalyst was prepared by incipient wetness impregnation with an aqueous solution of RhCl₃.H₂O salt. The partial oxidation of ethanol was performed in a fixed bed reactor at atmospheric pressure and the catalysts were diluted in SiC (SiC/Catalyst = 3). The reaction was carried out at different temperatures (473-1073K), using a W/Q = 0.16 g s/cm³ and an ethanol/O₂ molar ratio of 2. Prior to reaction the samples were reduced under H₂ at 773 K, for 1 hour, exit gases were analyzed on line with a gas chromatograph (VARIAN, CP 3800).

Results and Discussion

In terms of catalytic activity, Rh/CeO₂ exhibited the higher activity in all temperatures studied. The products identified over both catalysts were H₂, CO, CH₄, CO₂, acetaldehyde and water. Nevertheless, the products distribution was affected by the nature of support and reaction temperature. At low temperature the main products were acetaldehyde, CH₄, CO, CO₂ and H₂O (not shown). However, on Rh/Y₂O₃, the selectivity to acetaldehyde reached 50 % at 473 K while on Rh/CeO₂ only traces were detected. As the temperature increased acetaldehyde formation was suppressed and H₂ formation increased. The maximum H₂ selectivity was achieved at 1073 K over Rh/Y₂O₃ (48 %) and at 873 K (36%) on Rh/CeO₂ catalyst. The CO selectivity increased with the temperature on Rh/Y₂O₃ catalyst and reached a maximum (33 %) at 1073 K. However, CO selectivity on Rh/CeO₂ was around 20% on all the temperature range investigated. Moreover, Rh/Y₂O₃ was more selective than Rh/CeO₂ toward CH₄ formation.

The selectivity results at isoconversion in dry basis (Figure 1A) show that both catalysts presented similar H_2 selectivity. On the other hand, Rh/CeO₂ exhibited higher CO

formation (33%) than Rh/Y_2O_3 (20%). The CH_4 production (~13%) was only detected on Rh/Y_2O_3 catalyst.

These results can be attributed to the Rh particle size on each catalyst. As a matter of fact, the metal dispersion on Rh/Y₂O₃ was 50 % (with particle diameter of 2nm) while on Rh/CeO₂ it was around 18 % (with particle diameter of 5.4nm) (Figure1B). Moreover, TEM micrograph of Rh/CeO₂ fresh catalyst shows regions containing metallic particle with different sizes. These results are in agreement with some studies of Rh/SiO₂ that suggested the Rh cluster formation with different sizes [3]. In our work, the presence of large Rh particles on Rh/CeO₂ could promote the ethanol molecule adsorption via cyclic intermediate [4] which can explain the high CO selectivity exhibited by this catalyst. On the other hand, the high metal dispersion verified on Rh/Y₂O₃ could favor the hydrogen formation preferentialli via decomposition of ethoxy species. DRIFTS analyses are in agreement with this mechanism.

Figura 1 – (A) Products distribution at isoconversion and dry basis over Rh catalysts, at 773 K; (B) Particle size distribution histogram of Rh/CeO_2 .

Significance

This paper points promising catalysts for hydrogen production from ethanol, which is highly relevant to attempt the environmental and energetic requirement.

References

- 1. Mattos, L. V. and Noronha, F. B., J. of Catal. 233, 453 (2005).
- 2. Cavallaro, S., Chiodo, V., Vita, A. and Freni, S., J. Phys. Chem. B. 109, 10813 (2005).
- 3. Graydon, W.F. and Langan, M.D., J. of Catal. 69,180 (1981).
- 4. M. Mavrikakis and M. A. Barteau, J. Mol. Catal. 131, 135 (1998).