Sulfated Zirconia in SBA-15 Structures with Brønsted Acidity as Observed by ¹H MAS NMR Spectroscopy

<u>Volkan Degirmenci¹</u>, Özlen F. Erdem², Aysen Yilmaz³, Dieter Michel², Deniz Uner¹,* ¹Department of Chemical Engineering, Middle East Technical University, Ankara, 06531, (Turkey) ²Department of Chemistry, Middle East Technical University, Ankara, 06531, (Turkey) ³Institute of Experimental Physics II, University of Leipzig, Leipzig, D-04103, (Germany)

* uner@metu.edu.tr

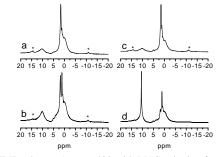
Introduction

Owing to the environmental restrictions throughout the world, non-polluting and atom-efficient catalytic technologies are much important now. The use of highly corrosive, hazardous and polluting mineral acids, such as HF and H_2SO_4 is commonly employed in the today's petrochemical and refinery industries.

In an effort to replace those acids, zirconium oxide, or zirconia, when modified with sulfate ions, forms a highly acidic or superacidic catalyst that exhibits superior catalytic activity that can activate C-C and C-H bonds of alkanes at relatively mild conditions. Thus, $S-ZrO_2$ and modified $S-ZrO_2$ form an important class of catalysts.

The commercial zirconia has a rather low surface area of 50 m^2/g or even less. Inclusion of sulfated zirconia in the mesoporous silicas provides a proper catalyst for many industrially important acid catalyzed reactions. The combination of silica and zirconia, not only increases the surface area of zirconia, but also improves the acidity by providing a fine distribution of acid sites in the silica framework.

In this study we report liquid like acidity of the high surface area sulfated zirconia in the mesoporous silica (SBA-15) structure. SBA-15 type mesoporous materials have higher stability than other mesoporous silicas due to their thicker walls, which enables the introduction of other metals into the framework. The sulfated zirconia incorporated SBA-15 type catalysts were prepared at different zirconia loadings (5-30 mol%ZrO₂). Zirconia was introduced in the form of ZrOCl₂ • 8H₂O during the preparation of SBA-15 and calcined at 500° C. Subsequent sulfation introduced superacidic character to the material. Catalysts were characterized by XRD, BET, and TEM. Besides, the effect of the inclusion of sulfated zirconia to SBA-15 on the acidic properties was investigated by means of ¹H MAS NMR.


Materials and Methods

Pure SBA-15 was prepared according to literature.¹ In the preparation of the ZrO₂ included SBA-15, the zirconia was introduced at an appropriate amount simultaneously with silicon source in the form of ZrOCl₂ \cdot 8H₂O during the preparation of SBA-15. The catalysts were calcined in air flow at 500 °C for 5h. Finally, the sulfated catalysts were prepared by sulfating in a 0.25 M H₂SO₄ solution.

Results and Discussion

BET results indicate that the preparation of 5 mol % ZrO_2 loading with high surface area (313m²/g) was accomplished. XRD results showed the formation of ZrO_2 crystals after 25mol% loading. In other words, the ZrO_2 crystals are finely distributed in the mesoporous silica framework up to this loading. TEM images revealed that even at 15mol% ZrO_2 loading the mesoporous hexagonal structure of SBA-15 was retained.

Figure 1a, 1c shows the ¹H MAS NMR spectra of the SBA-15 samples with zirconia and without zirconia. A sharp ¹H resonance line at 10.6 ppm was observed in the ¹H MAS NMR spectra of the samples including zirconia after sulfation (Figure 1 d). This signal is close to the acid signal observed in liquid superacids. This seems to support the idea that sulfated zirconia is not only an oxidant but also a good proton donor, a controversial subject in catalysis. The relative intensity of this line exhibited a maximum with zirconia loading at 25 mol% ZrO₂, which coincided with the appearance of the crystalline zirconia phases in the XRD results. Further increase in zirconia content resulted in a decrease in the intensity of the acid line at 10.6 ppm. Thus, there is an optimum for ZrO₂ loading between 15 and 25%.

Figure 1. ¹H MAS NMR taken at Avance-400 with MAS spinning frequency of 5 kHz at 300 K for dehydrated a) SBA-15, b) sulfated SBA-15, c) SBA-15 with 5% ZrO₂, d) sulfated SBA-15 with 5% ZrO₂. * stands for the spinning side bands. The ppm scale is with respect to liquid TMS.

Significance

Our measurements on hydrated and dehydrated sulfated zirconia included SBA-15 samples have clearly revealed the formation of superacid proton sites. Thus, they are promising catalysts for the industrial applications where strong acidity is essential in hydrocarbon conversion reactions.

Acknowledgement

The support to one of the authors, VD, provided by The Scientific and Research Council of Turkey (TUBITAK) through BDP Program is gratefully appreciated.

References

^{1.} Zhao D.; Huo Q.; Feng J.; Chamelka B. F.; Stucky G. D.; J. Am. Chem. Soc. 1998, 120, 6024-6036.