Catalytic H₂S Conversion and SO₂ Production over Iron Oxide in Liquid Sulfur

<u>Michael A. Shields*</u> and Peter D. Clark Alberta Sulphur Research Ltd. Department of Chemistry, The University of Calgary 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4 mshields@ucalgary.ca*

Introduction

Many different approaches have been developed for H_2S conversion from low H_2S content gas streams. These include sub-dew point processes, H_2S recycle processes, catalytic oxidation methods and various scavenging technologies [1]. Designed primarily for Claus tail gas clean-up, these processes also have the potential to be incorporated as a stand alone system for low tonnage sulfur recovery (< 10 ton/day). Low H_2S content gas streams exist where economically producing a clean effluent gas requires a small scale process with low infrastructure and maintenance costs. For this reason, investigations into new and improved low tonnage sulfur recovery processes are receiving considerable attention.

Using a slurry bed of catalyst containing liquid sulfur for low tonnage sulfur recovery has been shown to have potential. Notable advantages of using liquid sulfur include a thermal mass capable of absorbing the heat of reaction and sub-dew point system operation at < 150 °C, a temperature at which equilibrium Claus conversion exceeds 99 %. Kerr and Jagodzinski first studied the catalytic conversion of H₂S/SO₂ in liquid sulfur under atmospheric conditions and elevated pressures [2]. Using a slurry reactor assembly (160 °C), a lean acid gas mixture (2.5 % H₂S: 1.2 % SO₂) was fed through an alumina containing bed of liquid sulfur. H₂S conversion being moderate at atmospheric pressure was virtually complete at higher pressures. The design was patented as the Richards Sulfur Recovery Process, but no follow-up to the work either through further scientific studies or commercial application is known.

Our study investigates unsupported iron oxide for its ability to catalyze H_2S conversion in liquid sulfur. H_2S conversions were determined comparing initial iron oxide scavenging ability and steady-state catalytic activity. Analysis of H_2S/O_2 consumption and SO_2 production from the reactor provided insight to the steady-state catalysis. In addition to direct oxidation, Claus activity and liquid sulfur oxidation were investigated using the steady-state iron oxide. In the end, a dual catalyst concept (γ -Al₂O₃/steady-state iron oxide) provided high H₂S conversion to elemental sulfur.

Materials and Methods

Experiments were performed using a Buchi stirred autoclave system equipped with a magnetic stirrer and hollow shaft gassing turbine. The reaction medium consisted of elemental liquid sulfur with either a 5 wt% iron oxide content or a 5 wt% iron oxide/1 wt% γ -Al₂O₃ content. Iron oxide catalyst was prepared in our laboratory via a wet precipitation method while the γ -Al₂O₃ was crushed, commercial grade product. Both were shaken through a 45 µm sieve to ensure particle uniformity. Reactant gases were delivered into the autoclave using calibrated mass flow controllers from Advanced Specialty Gases. Gases were mixed and

fed into the liquid sulfur. For all experimental data sets, reactor conditions were held constant. Steady-state analysis parameters include a stirring rate of 1000 rpm, a reactor temperature of 135 °C and an operating pressure of 30 psig. A stoichiometric ($1.60 \% H_2S$: $0.80 \% O_2$: balance N₂) gas flow ratio was the primary feed gas, although other inlet gas mixtures were also used. Inlet and outlet gas stream analysis was achieved using a dual column Varian 3800 gas chromatograph equipped with dual TCD detection.

Results and Discussion

Catalytic activity of unsupported iron oxide for H_2S conversion was first investigated. Fresh iron oxide acted predominantly as a scavenger for bulk H_2S removal from the sour gas stream, with the subsequent steady-state iron oxide material maintaining only a low catalytic activity towards H_2S conversion (30 %). Interestingly however, the modified catalyst surface showed an increased propensity to generate significant amounts of SO₂ from a H_2S/O_2 gas stream. Removing the H_2S from the feed gas and passing a 0.80 % O₂/balance N_2 gas stream over steady-state iron oxide, significant SO₂ was generated. With O₂ consumption equaling SO₂ production (~ 0.30 % respectively) from the reactor and no sulfur species in the feed gas, the steady-state iron oxide promoted the oxidation of the liquid sulfur to SO₂. Using an inlet feed gas ranging in O₂ concentration from 0.60 % to 17.3 % (balance N₂), the rate of SO₂ production was shown to be directly proportional to the inlet O₂ concentration. As with all first order kinetic relationships, doubling the inlet O₂ concentration resulted in a doubling of SO₂ production in the outlet gas stream. This correlation was observed over the aforementioned O₂ concentration range with a linearity correlation coefficient (R²) of 0.9992. SO₂ production could therefore be controlled by controlling the amount of O₂ in the feed gas.

Improvements to the H₂S conversion were investigated through a dual catalyst concept where the SO₂ generated in the reactor was productively used to promote further H₂S conversion through the Claus reaction. To accomplish this, a Claus active surface (1 wt% γ -Al₂O₃) was added to the reactor containing 5 wt% steady-state iron oxide. Our hypothesis was that the steady-state iron oxide would in-situ generate SO₂ (from a H₂S/O₂ containing feed gas) which would then subsequently react with the H₂S through the Claus mechanism on the γ -Al₂O₃ surface. Using the same controlled set of experimental parameters, > 97 % H₂S conversion was attained with no SO₂ detected in the tail gas of the process.

Significance

A dual catalyst method that uses in-situ generated SO_2 to promote H_2S conversion through the Claus mechanism is a novel concept in the field of low tonnage sulfur recovery from low H_2S -content gas streams. Our study highlights liquid sulfur reactivity over steadystate iron oxide to produce SO_2 . Thought as being an undesirable reaction product, a multiple mechanism scheme allows the in-situ generated SO_2 to be consumed through a reaction with H_2S , thus promoting high H_2S conversion to elemental sulfur.

References

- 1. Pieplu, A., Saur, O., and Lavalley, J.C. Catal. Rev. Sci. Eng. 40 (4), 409-450 (1998).
- Kerr, R.K., Sit, S-P., Jagodzinski, R.F., and Dillon, J. Oil and Gas Journal. 80 (30) 230-243 (1982).