Towards a new generation of NO_x additives

David M. Stockwell BASF Catalyts LLC Iselin, NJ 08830 (USA) David.Stockwell@BASF.com

Introduction

Environmental regulations are pressuring petroleum refiners to reduce NO_x emissions from the regenerator of the fluidized catalytic cracking (FCC) unit. Frequently, CO concentration in the regenerator flue gas must be controlled, and this is easily accomplished using precious metal CO oxidation catalysts. However, HCN, formed by the pyrolysis of the nitrogen in coke, is also present and the precious metal (PM) CO oxidation catalysts (CO promoters) inadvertently convert at least a portion of the HCN to NO_x .

Materials and Methods

Conventional base metal water-gas shift catalysts were prepared at 0.5 -10 wt% loading. The proprietary Lambda Sweep test method [1] for FCC regenerator simulation was employed in the reaction studies.

Selective oxidation hypothesis. NO_x formation may be avoided by selective partial oxidation of HCN or NH_3 solely to N_2 . Useful catalysts normally employ mixed metal oxides and operate by the Mars-van Krevelen mechanism². We propose to rank catalytic activity and selectivity for the selective oxidation of ammonia using ΔG° for the stoichiometric reaction

 $NH_3 + MO_x = MO_{x-2.5} + NO + 1.5 H_2O$

Metal oxides with ΔG° <0 are hypothetically active for NO_x formation. Pt is predicted active to form NO_x while certain base metal oxides might make N₂ but be unable to make NO_x.

Water-gas shift. Adding the water-gas shift (WGS) and hydrogen oxidation reactions gives CO oxidation, suggesting such catalysts may function as CO promoters. The free energy hypothesis suggests that the base metal WGS catalysts might have lower selectivity to NO_x .

Hypothesis on promoter overheating. PM CO promoter typically is dosed at ca. 0.2 wt% of inventory but only a fraction of it remains active in the E-cat. It was therefore our hypothesis that CO promoters may be overheated with respect to bulk of the catalyst in the regenerator. The ΔG° theory suggests overheating will increase the likelihood of NO_x being formed.

Results and Discussion

WGS catalysts prepared with 10 wt% base metal oxide (BMO_x) loading on alumina were tested using 1% fresh, 1% steamed promoter. Results plotted in Figure 1 show that CO_2/CO ratios higher than for fully promoted E-cat (10-20) were routinely obtained. The 10 wt% loading BMO_x selectivities for NO_x were only somewhat improved over PM however.

Figure 1. Lambda sweep NO_x yields obtained as a function of integrated lean CO₂/CO for 10% BMO_x/Al₂O₃ (Δ) or 0.5-10% loading BMO_x/Al₂O₃ (Δ), 500 ppm Pt (\circ) or Pd (*) on Al₂O₃, 8 ppm Pt/Al₂O₃ (\bullet), or control runs without additives (+). BMO_x promoters gave high CO conversion but NO_x was not dramatically improved until the BMO_x loading was reduced.

WGS catalyst performance data for 0.5-10 wt% loading are also plotted in Figure 1, without regard to the MO_x loading, and some of these results are further improved. Those samples with low loading gave the most dramatic improvement in NO_x selectivity. Loading is thus responsible for the selectivity improvement, consistent with overheating and the ΔG^0 theory.

Significance

If the BMO_x promoters were to show sufficient activity maintenance during use in the actual FCC unit, refiners may be able to reduce NO_x while controlling CO emissions, eliminate the use of conventional precious metal CO oxidation catalysts, and avoid the capital expense and operating issues of SCR.

References

- (1) Stockwell, D. M. Prepr. Amer. Chem. Soc. Prepr. Pap.-Am. Chem. Soc., Div. Petr. Chem. 2006, 51 (2), 405.
- (2) Grasselli, R. K., in *Handbook of Heterogeneous Catalysis*, Wiley-VCH, Weinheim, Vol. 4 (1997) 2302.