TiO$_2$-Al$_2$O$_3$ FCC Traps: Characterization and V Mobility Testing

Rosario Morales-Armenta1, Brent E. Handy1*, María-Guadalupe Cárdenas-Galindo1, Francisco Pedraza2, and Francisco Hernández-Beltrán2

1CIEP/Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava # 6, Zona Universitaria, San Luis Potosí, SLP, CP 78210 (México)
2Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas # 152, Col. San Bartolo Atepehuacan, Delg. Gustavo Madero, México D.F., CP 07730 (México)

*handy@uaslp.mx Tel: +52-444-826-2440 Fax: 826-2372

Introduction
Vanadium contaminants in heavy distillation residues are responsible for the accelerated destruction of the faujasite structure in FCC catalysts. Traditionally, transition metal levels in the equilibrium FCC catalyst have been kept tolerable by removing residues from the gasoil feedstock, yet in the interest of increasing gasoline yields per barrel of crude, and as low sulphur crude stocks are becoming depleted, it has become necessary to include increasing amounts of resid in the FCC feed. This issue is of particular importance to Mexico, which will rely principally on Maya and other crude feedstocks that contain amongst the highest contents of sulfur and metals content of any feedstock available [1].

The principal strategy of preventing vanadium poisoning of the FCC catalyst is to retard or prevent vanadium species from entering the zeolite pores by adding a refractory ingredient, typically a spinel phase or basic oxide, that can bind strongly with the vanadium, yet not be catalytically active to adversely affect the product composition. Vanadium trap additives based on titania have been patented before [2], although details of the trapping mechanism are not well known. This work summarizes characterization work to-date on several TiO$_2$-Al$_2$O$_3$ trap candidates and their ability to capture vanadium under laboratory conditions with IMP catalyst FCC-51.

Materials and Methods
Several TiO$_2$-Al$_2$O$_3$ trap materials were prepared using the following constituents: pure anatase (A) (Sachtleben Chemie 100 m2/g); pure rutile (R) prepared by a precipitation method [3]; hydrated aluminas (Engelland Intercat) of the phases boehmite (C), gibbsite (G), and bayerite (B). Mixed titania-alumina supports of 1:1 weight ratio were prepared by mechanically dispersing equal amounts of one of the pure titania phases (A or R) with one of three commercial alumina phases. Another support was prepared by grafting, using titanium isopropoxide dissolved in toluene on Al$_2$O$_3$ (Degussa 100 m2/g) (labeled TgAl). Vanadium was impregnated to 3-4 wt% by the incipient wetness method, using a solution of ammonium metavanadato-oxalic acid (1:2).

Previous characterization work [4] was supplemented with studies to evaluate V / TiO$_2$-Al$_2$O$_3$ acidity, using IR and microcalorimetry, as well as deHn / CO$_2$ selectivity with the oxidative dehydrogenation of n-butane (ODH). Work is in progress to evaluate trap efficiency, by encapsulating trap material in a clay matrix and using dual-particle catalyst-trap mixtures in a fluidized bed steaming experiments [5].

Results and Discussion
Results from infrared spectroscopy and ammonia adsorption calorimetry show clearly that vanadia supported on the TiO$_2$-Al$_2$O$_3$ traps is acidic, either from the vanadia or from the inherent properties of the traps. Pyridine adsorption shows that the acidity is of the Lewis type in all traps except for the alumina prepared by Ti grafting, which has some Brønsted acidity. IR studies of the first overtone of V=O groups in the Ti grafted trap (TgAl) show a distinct band at 900 cm$^{-1}$ while no such bands are observed in the other samples. This indicates that the acidity of the TiO$_2$-Al$_2$O$_3$ traps is due to the different regenerating conditions existing in the FCC unit, and the interrelationship between trap efficiency and vanadium-trap interaction.

Activity/selectivity studies of V-impregnated trap materials for the ODH reaction demonstrate the acidic character of V / TiO$_2$-Al$_2$O$_3$ in that selectivity to CO$_2$ is 50%, as expected for this reaction under the reaction conditions used (450°C, HC / O$_2$ = 1.8, conv. = 15-20%). For instance, in V catalysts of basic character, total oxidation selectivity is considerably lower [6]. Butadiene selectivity was highest (52%) in the case of V / A, whereas on V / RC and V / AC the selectivities were 32 and 37%, respectively. Lower butadiene selectivities imply less accessibility of oxygen for oxidation reactions. The re-oxidation heats for V / RC and V / A were found [4] to be lower than in the other samples, supporting this notion. The higher total oxidation selectivity in V / RC could be attributed to the stronger acidity available in this sample vs. in V / A. Trap efficiency experiments, still in progress, will compare results with the acidic, basic, and redox properties of these trap materials.

Significance
An attempt is being made to correlate acid, basic, and redox properties to V trap efficiency in TiO$_2$-Al$_2$O$_3$ traps, due to the different regenerating conditions existing in the FCC unit, and the interrelationship between trap efficiency and vanadium-trap interaction.

References