Barium loading effect on the Desulfation of Pt/BaO/Al₂O₃ Lean NOx Trap Catalysts: *in situ* Sulfur XANES and TR-XRD study

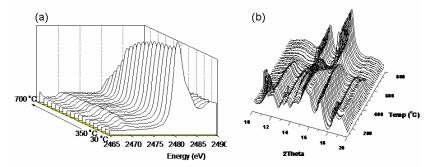
Do Heui Kim^{1,*}, Ja Hun Kwak¹, János Szanyi¹, Xianqin Wang¹, Jonathan C. Hanson², Charles H.F. Peden¹ ¹Institute for Interfacial Catalysis, Pacific Northwest Nat. Lab., Richland, WA 99354 (USA) ²Chemistry Department, Brookhaven Nat. Lab., Upton, NY 11973 (USA) *do.kim@pnl.gov

Introduction

Internal combustion engines operating under lean-burn conditions, such as diesel engines, exhibit high fuel efficiency. Removal of harmful NOx gases from their exhaust in the presence of excess oxygen, however, presents a great challenge. Among the approaches for NOx reduction from internal combustion engines operating under lean-burn conditions, lean-NOx traps (LNTs, aka NOx storage/reduction (NSR) catalysts or NOx adsorbers) are one of the promising technologies. In the LNT technology, an active (alkali and/or alkaline earth) oxide material takes up NOx under lean engine operation conditions and stores them as nitrates [1]. In a brief rich cycle, these nitrates are released from the active oxide catalyst component, and then reduced to N_2 on the precious metal component of the catalyst. Although continuing research regarding NOx storage and regeneration steps is providing for a good understanding of LNT performance, the stability of the material against SO₂ poisoning remains a critical issue. We have shown that NOx adsorption/desorption chemistry is strongly dependent on the loading of barium based on Fourier Transform Infrared Spectroscopy (FTIR) and NO2 temperature programmed desorption (TPD) [2]. By analogy to this, we have been addressing an important question about how the desulfation chemistry varies as a function of barium content in the LNT formulation by using H_2 temperature programmed reaction (H_2 TPRX), synchrotron time resolved x-ray diffraction (TR-XRD), in situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and transmission electron microscopy (TEM).

Materials and Methods

 $Pt/BaO(x, x = 8, 20 \text{ wt\%})/Al_2O_3$ samples were prepared by using conventional impregnation methods. The as-calcined samples were pre-sulfated by exposing them to a gas mixture of SO₂ and O₂. H₂ TPRX was carried out to investigate the desulfation behavior with temperature. TR-XRD and *in situ* sulfur XANES experiments, using procedures that simulate H₂ TPRX conditions, were performed under H₂ flowing conditions while ramping the temperature up to 800°C to give information about phase changes and sulfur oxidation state, respectively.


Results and Discussion

From the H_2 TPRX experiments for sulfated Pt-BaO(8)/Al₂O₃ and Pt-BaO(20)/Al₂O₃, it was found that H_2S is formed at higher temperature for the sample with higher barium loading, implying that the type of barium sulfate species formed upon the uptake of SO₂ is different depending on the loading of barium species (surface or bulk), resulting in markedly different desulfation behavior. In addition, the amount of H_2S produced over

 $Pt-BaO(8)/Al_2O_3$ is two times larger than that of the sample with higher barium loading, indicating a more facile desulfation of the surface barium sulfates.

In situ sulfur K-edge XANES experiments were carried out to investigate changes in the oxidation states of sulfur as a function of H₂ reduction temperature. We collected XANES spectra during H₂ treatment while ramping the sample temperature up to 700°C. As shown in Figure 1(a), the sulfated sample contains a large peak at 2482 eV, which can be assigned to a sulfate (SO₄⁻²) species. As the temperature increases, a sulfide-like (S²) species is formed above 400°C, while the main sulfate (SO₄⁻²) peak decreases significantly, especially after 600°C. However, compared with the sample with higher barium loading, the Pt-BaO(8)/Al₂O₃ catalyst contains a significantly lower amount of residual sulfur species of all types after H₂ TPRX up to 700°C, consistent with the H₂ TPRX results.

Figure 1(b) shows a series of XRD patterns collected during treatment with H_2 of the sulfated Pt-BaO(8)/Al₂O₃ sample. The room temperature XRD pattern contains peaks assigned to BaSO₄. Up to about 500°C, the BaSO₄ phase is unchanged. However, above 550°C, diffraction peaks associated with formation of a BaS phase appear and continue to grow with increasing temperature, along with a corresponding drop in the intensities of BaSO₄ peaks. Compared with the Pt-BaO(20)/Al₂O₃ sample (results not shown), the Pt-BaO(8)/Al₂O₃ catalyst contains a much smaller amount of BaS, leading to the conclusion that residual sulfur species were present at much lower concentrations for the lower barium loading sample after desulfation with H₂ based on the combination of characterization results.

Figure 1. In situ Sulfur K-edge XANES spectra (a) and TR-XRD patterns (b) collected during desulfation with H_2 for sulfated Pt-BaO(8)/Al₂O₃ with increasing the temperature.

Significance

Understanding of the desulfation behavior is expected to provide important information for the development of more sulfur resistant LNT catalyst systems.

References

- 1. Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., Parks II, J.E., *Cat. Rev.-Sci. Eng.* **2004**, *46*, 163.
- Szanyi, J., Kwak, J.H., Kim, D.H., Burton, S.D., Peden, C.H.F. J. Phys. Chem. B 2005, 109, 27.