Effect of CeO2 on the Storage and Regeneration Behavior of Lean NOx Traps

Yaying Ji¹, Todd J. Toops², Jae-Soon Choi² and Mark Crocker^{1*} ¹Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511-8479 ²Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory, 2360 Cherahala Blvd., Knoxville, TN 37932-1563 *crocker@caer.uky.edu

Introduction

Lean-burn engines provide more efficient fuel combustion and lower CO₂ emissions compared with traditional stoichiometric engines. However, the effective removal of NO_x from lean exhaust represents a challenge to the automotive industry. In this context, Lean NO_x Traps (LNTs) represent a promising technology. Although many studies have been conducted using model Pt/BaO/Al₂O₃ type LNT catalysts, there have been few reports concerning the effect of ceria on LNT performance [1]. Ceria is an important component of LNTs formulated for lean burn gasoline applications, its role being principally to provide the necessary oxygen storage capacity when the engine is operating at the stoichiometric point (i.e., the catalyst is functioning as a conventional three-way catalyst) [2]. However, ceria also promotes H₂ formation under rich conditions via the water-gas shift (WGS) reaction [3], and can provide additional NO_x storage capacity during lean operation. In this study, we focused on investigating the effect of CeO₂ on the functioning of both model and fully formulated LNTs.

Materials and Methods

An in-situ Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) reactor and a microreactor equipped with a mass spectrometer were employed to explore the storage and regeneration behavior of two model powder catalysts: 1 wt% Pt/20 wt% BaO/Al₂O₃ (hereafter denoted as PBA) and a physical mixture of 1 wt% Pt/20 wt% BaO/Al₂O₃ and 1 wt% Pt/CO₂ in a 74:26 weight ratio (denoted as PBAC). In addition, LNTs were evaluated in washcoated monolith form (62 cells per cm², 2.2 cm diameter, 7.62 cm length) on a bench flow reactor. The gas composition used for catalyst evaluation was 300 ppm NO, 10% O₂, 5% CO₂, 5% H₂O, balance N₂ (lean), and 1.575% H₂, 2.675% CO, 5% CO₂, 5% H₂O, balance N₂ (rich), with a gas space velocity of 3×10^4 h⁻¹.

Results and Discussion

NO_x storage measurements were performed under both continuous lean flow and leanrich cycling conditions after pretreatment of each catalyst in H₂. Under a continuous flow of NO (300 ppm) in 8% O₂ (with 5% CO₂ and 5% H₂O added) for 1 hour, both catalysts exhibited their highest NO_x storage capacity at 300 °C. Compared to PBA, PBAC had higher NO_x storage capacity (NSC) at 200 °C (0.24 versus 0.19 mmol/g), which clearly demonstrates the benefit of adding ceria with respect to low temperature NO_x storage. Under lean-rich cycling conditions (6 min lean, 0.5 min rich), both catalysts attained their maximum NO_x conversion at 300 °C (90% for PBAC versus 76% for PBA), while the beneficial effect of ceria addition on NO_x conversion was evident over the entire range of 200 to 400 °C. Moreover, PBAC displayed a superior selectivity to N₂ over PBA for the entire range. At 300 °C, the measured selectivities to N₂ were 76% and 69% for PBAC, and PBA, respectively. The results of microreactor cycling experiments are summarized in Table 1.

The regeneration behavior of PBA and PBAC was investigated using temperature programmed reduction (TPR) and desorption (TPD) techniques after NO_x storage at 300 °C for 1 h. DRIFTS results indicated the presence of mainly monodentate nitrate on both catalysts after NO_x storage at this temperature. Using H₂ as a reductant, both catalysts could be fully regenerated, as evidenced by the disappearance of the nitrate bands, at temperatures approaching 400 °C. An identical TPR experiment in a microreactor showed that N_2 production and H_2 consumption commenced simultaneously on PBA at 150 °C. However on PBAC, N₂ production began at a higher temperature (130 °C) than H₂ consumption (81 °C), with the initial H₂ consumption being ascribed to reduction of the ceria. Regeneration with CO resulted in more complicated DRIFT spectra, Additional species observed included isocvanate (~2160 cm⁻¹). Pt-bound CO (2070 cm⁻¹) and BaCO₃ (~1550 cm⁻¹). CO was a less effective reductant than H₂, such that upon heating to 450 °C both PBA and PBAC contained residual nitrate species. The addition of H₂O improved the CO reduction efficiency for both catalysts, as significantly less nitrate remained on the surface. Mass spectra indicated that N₂ release commenced at higher temperatures during reduction with CO compared to reduction with H₂ and extended up to 500 °C for PBA and 431 °C for PBAC. The addition of H₂O to the CO feed resulted in an initiation of N₂ release at a lower temperature for both catalysts, likely due to the water gas shift reaction, as evidenced by the detection of H_{2} . PBAC exhibited much earlier N₂ release and higher H₂ formation than PBA.

Further tests were performed in a bench reactor using fully formulated monolithic LNT catalysts containing either no CeO₂ or 100 g/l La-stabilized CeO₂. Under realistic cycling conditions (60 s lean/5 s rich), the ceria-containing catalysts exhibited higher NO_x conversion than the ceria-free catalyst at all temperatures in the range 150-350 °C, with comparable activity at 450 °C. The presence of ceria also significantly improved the selectivity to N₂ at most temperatures, with markedly lower NH₃ release during the rich phase. Overall, these findings demonstrate that the incorporation of ceria in LNTs not only improves NO_x storage efficiency but also positively impacts LNT regeneration behavior both in terms of conversion and selectivity, albeit at the expense of additional reductant consumed by the stored oxygen.

Temperature	PBA		PBAC	
(°C)	$NO_x \text{ conv.}(\%)$	N ₂ sel. (%)	$NO_x \text{ conv.} (\%)$	N ₂ sel. (%)
200	46	82	67	92
300	76	69	90	76
400	74	78	82	88

Table 1. NO_x conversion and N₂ selectivity under lean-rich cycling condition

Significance

This work provides detailed information on the role of ceria in lean NO_x trap chemistry, which could benefit the design and operation of commercial LNT catalysts.

References

- Theis, J., Ura, J., Goralski, C., Jen, H., Thanasiu, E., Graves, Y., Takami, A., Yamada, H., Miyoshi, S., SAE Paper no. 2003-01-1160.
- Fornasiero, P., Balducci, G., Di Monte, R., Kaspar, J., Sergo, V., Gubitosa, G., Ferrero, A., Graziani, M.J., J. Catal., 164, 173 (1996).
- Jacobs, G., Williams, L., Graham, U., Sparks, D.E., Davis, B.H., Appl. Catal. A 252, 107 (2003).