Regeneration of Pt/BaO/Al₂O₃ NOx Traps with H₂: Role of Ammonia

<u>S. S. Mulla</u>¹, L. Cumaranatunge¹, A. Yezerets², N. W. Currier², W. N. Delgass¹, J. M. Caruthers¹, and F. H. Ribeiro^{1*} ¹School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 (USA) ²Cummins Inc., 1900 McKinley Ave, Columbus, IN 47201 (USA) *fabio@purdue.edu

Introduction

The NOx storage/reduction (NSR) process is one of the technologies in development to abate the NOx (NO+NO₂) emitted from combustion engines. This system works by the Pt catalyst transforming the NO in the exhaust to NO₂, which then reacts with a barium or potassium component to form a stable compound, which is periodically reduced to release most of the nitrogen as N₂ [1]. This cycle of oxidation, trapping, release and reduction is performed, for example, with a sixty second capture or lean phase (oxidation and trapping) followed by a four second regeneration or rich phase (release and reduction). On a commercial system, the efficiency in transforming the emitted NOx to N₂ is over 95%. The objective of this contribution is to gain insight into the mechanism governing the reduction of stored NOx species and provide a model of how the reduction process occurs, including why it is so selective to N₂. We will show that the reduction process can be explained by the release of NO or NO₂ which is then optimally reduced to N₂ or over-reduced to NH₃ on the Pt clusters. If N₂O is formed, most of it continues to react with hydrogen on the Pt surface to form N₂ or NH₃. Additionally, we will show that the NH₃ formed is as effective as H₂ in the reduction/regeneration process and is eventually transformed to N₂.

Materials and Methods

The Pt/BaO/Al₂O₃ catalyst used in this study was supplied by EmeraChem, LLC in monolithic form. The monolith had a cell density of 200 channels per in², a Pt loading of *ca*. 50 g ft⁻³ and Ba loading of 20 wt%. The total gas flow rate over the sample was 7.0 standard L min⁻¹ (GHSV = 30,000 h⁻¹). The Pt metal dispersion, as measured by H₂-O₂ titration, was 60%. The experimental apparatus used for this study is described in detail elsewhere [2]. All the experiments reported here were run at 300°C, except where specified. The NO, NO₂, N₂O, NH₃ and H₂O concentrations in the outlet gas stream were detected with an FTIR gas analyzer (MKS MultiGasTM Analyzer, Model 2030), while the N₂ concentration was detected with a quadrupole mass spectrometer (SRS RGA 200). Argon was used as the carrier gas to allow for the measurement of the released N₂. The gas flows were controlled by mass flow controllers and calibrated needle valves. The system was automated to switch 3-way valves between leanrich cycles. Thermocouples were placed 6 mm before and after the catalyst sample to verify inlet and outlet gas temperatures.

Results and Discussion

Figure 1 shows a comparison of the evolution of the outlet gas concentrations from a Pt/BaO/Al₂O₃ catalyst after the switch to regeneration gases containing either 0.75% H₂/Ar or 0.53% NH₃/Ar (the number of H atoms per unit of time flowing over the sample kept nearly identical). This rich phase (3 minutes long) was preceded by a 7 minute long lean phase, that contained 350 ppm NO, 10% O₂, balance Ar, and a 5 second purge with Ar. The nitrogen

balance between capture and regeneration phases was found to close within experimental error. As seen in Fig. 1-A, the N_2 and H_2O traces for both regenerating mixtures have a rectangular wave shape indicating a "plug flow" type of mechanism, implying a complete reaction between the reductant and the NOx to produce N_2 and H_2O . The reductant was found to be the limiting reagent as evidenced by the evolution of the H_2 or NH_3 traces only towards the end of the cycle, and also by the fact that the time required for regeneration was inversely proportional to the H_2 amount fed per unit time, as we verified experimentally. Lowering the temperature for the tests from 300°C to 242°C made no difference on the reduction profiles, suggesting that the regeneration is limited by transport of reactants and not by kinetics. From Fig. 1 it is also clear that either NH_3 or H_2 is capable of regenerating the trap in a similar way. In the case of regeneration by H_2 , the NH_3 evolution curve is the result of the competition between its generation by NOx-H₂ reaction and its subsequent oxidation by NOx. The NOx (NO+NO₂) released from the trapping sites reacts with H₂ over Pt to form NH₃, N₂ and N₂O, the selectivity depending on the local NOx/H₂ ratio, as verified by experiments on a Pt/Al₂O₃ catalyst [3]. When $H_2/NOx > 1$, the reaction will form mostly NH₃. The NH₃ thus formed moves along the catalyst bed in a plug flow manner and is completely consumed in reducing the NOx to N₂, thereby regenerating the catalyst. When this NH₃ front reaches the end of the catalyst bed, it begins to break through due to the absence of NOx to oxidize the NH₃ to N_2 and H₂O, giving rise to the NH₃ trace seen at the end of the cycle. Thus, NH₃ serves as a hydrogen carrier while regenerating the trap with H_2 and eventually gets oxidized by the stored NOx to N_2 , thereby maintaining the high selectivity of the process towards N₂.

Figure 1. Evolution of the species after the switch to the rich phase containing $0.75\% H_2/Ar$ (solid lines) or 0.53% NH₃/Ar (dashed lines) at 300°C. (A) N₂, H₂O and NH₃ traces, (B) NO₂, NO and N₂O traces

References

- 1. Takeuchi, M. and Matsumoto, S.i. Top. Catal. 28, 151 (2004)
- Mulla, S.S., Chen, N., Cumaranatunge, L., Delgass, W.N., Epling, W.S. and Ribeiro, F.H. Catal. Today 114, 57 (2006)
- Cumaranatunge, L., Mulla, S.S., Yezerets, A., Currier, N.W., Delgass, W.N. and Ribeiro, F.H. J. Catal, (2006) doi:10.1016/j.jcat.2006.11.008