The performance of CeO$_2$-modified Ni/Al$_2$O$_3$ catalyst in the autothermal reforming of iso-octane

Sang Ok Choi1, In Young Ahn1, Kwang Soop Jung2, Hyun Khil Shin3, Sang Heup Moon1*
1School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University, San 56-1, Shillim-dong, Kwanak-ku, Seoul 151-744 (Korea)
2Value Creation Center, GS Caltex Corporation, 104-4, Munji-dong, Yuseong-gu, Daejeon-city 305-380 (Korea)
3Institute of Chemical Processes, Choong-Ang University, 221, Dongjak-daero, Dongjak-gu, Seoul 159-922 (Korea)
*shmoon@surf.snu.ac.kr

Introduction

Autothermal reforming (ATR) is considered as one of promising processes to produce hydrogen. Even though Ni/Al$_2$O$_3$, which is generally used as a commercial catalyst for steam reforming of CH$_4$, shows a high activity in gasoline ATR, the catalyst is easily deactivated by coking [1]. Therefore, in order to extend the catalyst lifetime, it is necessary that the amounts of coke deposited on the catalyst surface are minimized. In this study, two types of CeO$_2$-modified Ni/Al$_2$O$_3$ catalysts were prepared by an impregnation method with different sequences of Ni and CeO$_2$ addition, i.e. Ni-CeO$_2$/Al$_2$O$_3$ (Ni-CeX) and Ni/Al$_2$O$_3$/Ce$_2$O$_3$ (Ni/Al/CeX), and their performance in iso-octane ATR was investigated. Coke was characterized by elemental (EA) and thermogravimetric analyses (TGA).

Materials and Methods

5 wt% Ni/Al$_2$O$_3$ was prepared as a reference catalyst by an incipient wetness impregnation method using gamma alumina support (CONDEA, surface area = 206.6 m2/g, pore volume = 0.48 cm3/g) and Ni(NO$_3$)$_2$·6H$_2$O as a Ni precursor. CeO$_2$-modified Ni/Al$_2$O$_3$ catalysts were prepared by impregnating γ-Al$_2$O$_3$ with an aqueous solution containing Ni(NO$_3$)$_2$·6H$_2$O and Ce(NO$_3$)$_3$·6H$_2$O by changing the impregnation sequence, followed by calcination at 500°C for 5 h. That is, Ni/Al$_2$O$_3$, Ni-CeX, with ‘X’ denoting the amounts of added CeO$_2$ in 1 wt% units, were obtained by adding Ni to Ce$_2$O$_3$-containing alumina and CeO$_2$ to Ni-containing alumina, respectively.

Iso-octane ATR was performed in a quartz micro-reactor at an atmospheric pressure using iso-octane (Aldrich, 99.9%) as a feed at 600°C. H$_2$/CO ratios in the reactant stream were maintained at 3/3/0.25 and the total flow rate was 68.8 ml/min. Reaction products were analyzed with an on-line G.C. (Agilent, model 6890 series with TCD) using a packed column.

Results and Discussion

Figure 1 shows the deactivation behavior of the catalysts, presented by changes in the H$_2$ production normalized to the initial value of each catalyst, as a function of reaction time. In the case of Ni/Al$_2$O$_3$, the H$_2$ production was decreased by 25% of the initial value in 24 h and then rapidly decreased to 11% of the initial value afterwards. Ni-CeX showed the same trend in deactivation behavior as obtained with Ni/Al$_2$O$_3$, that is, Ni-Ce04 and Ni-Ce06 were slowly deactivated until 24 h and significantly decreased by 67% of the initial value after 48 h. On the other hand, the deactivation behavior of Ni/Al$_2$O$_3$ differs from that of Ni/Al$_2$O$_3$, i.e. Ni/Ce06 and Ni/Ce10 maintained 70% and 66% of the initial H$_2$ production after the reaction time of 48 h. This result indicates that added CeO$_2$ suppresses the deactivation of catalysts, particularly when CeO$_2$ is added to Al$_2$O$_3$ prior to Ni impregnation.

EA results indicated that the amounts of coke deposited on Ni/Al$_2$O$_3$, Ni-Ce04 and Ni-Ce06 were 46.4%, 37.2% and 34.8%, respectively. Figure 2 shows the results of DTGA, obtained from the TGA curve, which show two kinds of peaks: Peak I at temperatures below 500°C, representing reversible coke, and Peak II at temperatures higher than 500°C, representing graphitic coke [2]. Reversible coke decreased in the order Ni-Ce04 > Ni-Ce06 > Ni/Al$_2$O$_3$ and was eliminated at lower temperatures from Ni/Ce06 than in the case of Ni-Ce04. On the other hand, graphitic coke decreased in the order Ni/Al$_2$O$_3$ > Ni-Ce04 ≈ Ni/Ce06. EA and DTGA indicated that Ni/Ce06, which showed a longer lifetime than Ni-CeX, produced less amounts and different types of coke on the catalyst surface compared with the case of Ni-CeX.

Significance

Among two kinds of CeO$_2$-modified Ni/Al$_2$O$_3$ examined in this study, Ni/CeX showed higher hydrogen production and was deactivated more slowly than Ni-CeX and Ni-only catalysts. In particular, Ni/Ce06 showed the best catalytic performance among tested catalysts.

References